Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матриц сложение

Как и в случае матриц, сложению поворотов в случае их активного представления отвечает произведение кватернионов составляющих поворотов в обратном порядке. При этом все кватернионы заданы в исходном базисе к (/ = 1, 2, 3).  [c.46]

В кинематике механизмов операции сложения матриц и умножения их на скаляр находят применение в действиях над матрицами-столбцами.  [c.631]

При сложении двух матриц одинакового размера получается матрица того же размера, каждый элемент которой равеи сумме соответствующих элементов слагаемых матриц.  [c.104]


Над матрицами можно выполнять действия транспонирования, сложения, умножения. Матрица А, транспонированная по отношению к матрице А, образуется из матрицы А заменой каждой ее строки на столбец того же номера. Например, при транспонировании матрицы  [c.50]

Множество J n всех л-мерных векторов называют линейным алгебраическим пространством, если в нем определены операции сложения и умножения на скаляр точно так же, как для матриц. Число я называется размерностью пространства Rn- Рассмотрим помимо вектора а другой п-мерный вектор  [c.19]

Матрица [/(], называемая глобальной матрицей жесткости или просто матрицей жесткости системы, получается сложением локальных матриц жесткости [Л ] по следующему правилу сначала к нулевой матрице размерности NxN добавляется матрица, в левом верхнем углу которой стоит локальная матрица жесткости 1-го элемента, к получившейся матрице добавляется матрица размера /V х /V, ненулевые элементы которой расположены на пересечении 2-го и 3-го столбцов и 2-й и 3-й строк и равны соответствующим элементам локальной матрицы жесткости для 2-го элемента и т. д. на -м шаге добавляется матрица, ненулевые элементы которой расположены на пересечении к и к- строк и к н k- - столбцов и равны соответствующим элементам локальной матрицы жесткости k-ro элемента.  [c.134]

При вычислении матрицы плотности мы будем предполагать, что рассеянные волны имеют беспорядочные фазы и при сложении в среднем дают нуль. Если и г и г лежат слева от слоя, то  [c.718]

Все остальные неизвестные определяются лишь путем умножения и сложения матриц. Весь процесс вычислений при этом легко программируется с использованием стандартных программ сложения, умножения и обращения матриц.  [c.97]

Непосредственным перемножением и сложением матриц (71.29) нетрудно убедиться, что они удовлетворяют соотношениям (71.28), понимая, что в их правой части стоит единичная матрица. Например, для имеем  [c.387]

Описанная процедура лежит в основе алгоритма формирования глобальной матрицы и глобального вектор-столбца. Как было уже отмечено выше, она реализуется путем последовательного перебора элементов следующим образом. Берется первый элемент, анализируется его строка в индексной матрице и устанавливается, в какие три уравнения этот элемент дает вклад . Далее рассчитываются его локальная матрица и вектор-столбец. При этом расчете используется информация о наличии у данного элемента граничных сторон, содержащаяся в четвертом столбце индексной матрицы. Пусть локальным номерам 1, 2, 3 соответствуют фактические номера i, j, k. Тогда первая строка локальной матрицы и первый коэффициент локального вектор-столбца участвуют в формировании i-й строки глобальной матрицы и i-ro коэффициента глобального вектор-столбца. Производится сложение найденных локальных коэффициентов с имеющимися значениями глобальных коэффициентов дц, Gij, Затем аналогичная процедура повторяется для второй и третьей строк локальной матрицы и второго и третьего коэффициентов локального столбца. Они участвуют в формировании строк глобальной матрицы и коэффициентов глобального столбца с номерами / и к, которые соответствуют локальным номерам 2 и 3.  [c.144]


Сложение и вычитание матриц. Две матрицы можно сложить (вычесть). Для этого необходимо, чтобы порядки матриц были одинаковы, и тогда сложить (вычесть) соответствующие элементы матриц.  [c.179]

Нетрудно убедиться, что выполнение операций дифференцирование вектора [X], умножение матрицы [К] на вектор [Р] и сложение с вектором [F] —приводит к системе уравнений вида (1). Однако матричная форма записи более компактна й упрощает действия по преобразованию системы уравнений.  [c.181]

Полное изображение типа С образуется при перемещении преобразователя в направлении, перпендикулярном к направлению электронного сканирования. При этом сигналы коорди-, нат строки вырабатываются датчиками координат, как в системе с ручным (механическим) сканированием. Более простое решение этой задачи может быть получено с применением двумерного электронного сканирования. Пьезоэлементы двумерной матрицы (например, с числом элементов 8X8) возбуждаются с задержками, обеспечивающими сложение амплитуд акустических импульсов лишь на определенных направлениях в объекте контроля. Аналогично в тракте приема принятые пьезоэлементами сигналы предварительно задерживаются так, что суммирование амплитуд соответствует направлению излучения.  [c.271]

Матрица называется единичной матрицей. Удобство записывать совокупности значений каких-либо величин в таком виде заключается в том, что над матрицами можно производить соответствующие действия (сложение, умножение, см., например, р]).  [c.93]

Бесконечно малые повороты. Целесообразно попытаться установить соответствие между векторами и конечными поворотами, описываемыми ортогональными матрицами. Вектор, который мы поставим в соответствие некоторому повороту, должен, конечно, иметь определенное направление —направление оси вращения и определенную величину, например равную углу поворота. Мы сейчас увидим, что успешно осуществить такое соответствие оказывается невозможным. Предположим, что А и В будут двумя такими векторами , связанными с преобразованиями А и В. Тогда, поскольку это векторы, они должны обладать свойством коммутативности при сложении, т. е. для них должно выполняться равенство  [c.142]

Но сложение двух вращений, т. е. последовательное выполнение одного из них за другим, описывается, как мы знаем, произведением матриц АВ, и это умножение не коммутативно, т. е. АВ =ВА. Следовательно, векторы Л и Д не будут обладать коммутативностью сложения и поэтому их нельзя будет считать в  [c.142]

Мы имеем здесь иллюстрацию сложения вращений согласно формуле (9.13), ибо, транспонируя элементы в (11.1)—(11.3), можно получить матрицы М, М2, Mg и непосредственно убедиться, что матрица М (11.5) представима в виде  [c.47]

В алгебре матриц определяются следующие действия над матрицами а) сложение матриц б) умножение матрицы на число в) умножение матриц. Указанные действия позволяют вычислить соответственно сумму матриц, произведение матрицы на число, произведение матриц и, как следствие, разность матриц.  [c.41]

После построения /-й строки матрицы F выполняется циклический сдвиг элементов матрицы-строки R на один влево или вправо для формирования направлений штриховки, соответствующих углам 45 и 135°. Завершив формирование матрицы F, с помощью логического сложения получим матрицу содержащую описание заштрихованной области сечения  [c.123]

Логическое сложение матриц реализуется путем попарного логического сложения одноименных элементов исходных матриц  [c.123]

Сложение и вычитание матриц. Эти операции имеют смысл лишь при их одинаковой структуре (одинаковом количестве строк и одинаковом количестве столбцов) слагаемых или вычитаемых матриц. Суммой (или разностью) двух (т х п) матриц А =-- а,-/ и В = ( fe(jj называется (т х п) матрица С = с у (г = 1, 2,. . ., т, / = 1, 2,. . ., п), элементы которой равны сумме (или разности) соответствующих элементов слагаемых (вычитаемых) матриц, т. е.  [c.22]

Сложение (а следовательно, и вычитание) матриц ассоциативно и коммутативно, т. е.  [c.22]

Операции сложения и вычитания матриц применяются при переносе систем координат в процессе решения задач анализа механизмов (см. гл. 17, п. 34).  [c.22]

Если учесть, что для перемножения двух матриц п-то порядка необходимо осуществить л умножений и п — 1) сложений, то для перемножения двух матриц 4-го порядка нужно произвести 64 умножения и 48 сложений или всего 112 вычислительных действий, а для матриц 3-го порядка соответственно 27 + 18 = = 45 действий.  [c.188]


В нижней траверзе пресса имеется проём для пропуска через пресс балки или двух швеллеров, сложенных стенками нижний стол, на котором устанавливается инструмент, состоит из двух частей. Подушки с матрицами для пробивания отверстий в полках устанавливаются на концах консольных выступов стола.  [c.483]

Рассмотрим, как влияет учет дисперсий на результаты расчета. Формально учет дисперсий выражается в сложении матрицы [а] [а] с диагональной матрицей [ )], имеющей положительные члены. Это способствует улучшению обусловленности матрицы [а] [а], что особенно важно в случаях, когда последняя плохо  [c.58]

Сложение матриц. Суммой матриц  [c.95]

DN — присвоение значений единицы диагональным элементам двумерного массива А+В — сложение матриц А и В  [c.163]

Необходимость применения динамического метода существенно усложняет решение неконсервативных задач устойчивости. Здесь требуется весьма эффективный метод определения частот собственных колебаний. Среди других методов в этом отношении вьщеляется МГЭ. Он позволяет получать точный спектр частот (устраняет недостаток МКЭ), а в трансцендентном частотном уравнении отсутствуют точки разрыва 2-го рода (устраняет недостаток метода перемещений). Дополнительными положительными факторами являются простая логика формирования динамической матрицы устойчивости, отсутствие операций умножения, обращения и сложения матриц, хорошая устойчивость численных операций при вычислении определителя и т.п.  [c.196]

Кватернионное сложение поворотов. Как и в случае матриц, сложению поворотов отвечает произведение кватернионов, при этом активная и пассивная точки зрения на преобразования имеют существенные отличия.  [c.46]

Сложение. Матрицы А п В могут быть сложены, если они имеют оди-накоиое число строк и столбцов.  [c.631]

Таком образом, для выполнения алгоритма (55) требуются два прямых и одно обратное преобразование Ф/рье, а также прямое умножение матрицы на матрицу. Если в качестве дижретного преобразования Фурье использовать алгоритм БПФ, число опера дай сложения составит 2N og2 , а число операций умножения -.  [c.63]

Показано, что в случае произвольных распределений наработок и времени восстановления в матрицу Гб) вводятся ооответствувщие вероятности переходов, а вместо сложения интенсивностей осуществляется умножение вероятностей независимых событий.  [c.15]

Сложение двух матриц не является такой важной операцией, как их умножение, однако оно встречается достаточно часто. Под суммойА + В понимается такая матрица С, элементы которой получаются посредством сложения соответствующих элементов А и В. Таким образом, можно написать  [c.119]

Может показаться, что скорость, большую скорости света с, можно получить с помощью двух последовательных преобразований Лоренца. Пусть, например, вторая система движется относительно первой со скоростью Vi > с/2, а третья система движется относительно второй со скоростью 02, также большей, чем с/2 (в том же направлении). Можно подумать, что скорость третьей системы относительно первой будет тогда больше чем с. Однако это не так, ибо эта скорость не равна просто V -f Ua-Чтобы убедиться в этом, достаточно найти преобразование Ло-)енца, описывающее переход от первой системы к третьей. 1еремножая для этого матрицы рассматриваемых преобразований, мы найдем полное преобразование и увидим, что оно соответствует скорости из, определяемой так называемым законом Эйнштейна для сложения скоростей. Согласно этому закону  [c.217]

Описание механических свойств композитных материалов, которые могут обладать весьма высокой прочностью (особенно статической и ударной), можно производить двумя путями. В первом случае композитные материалы рассматриваются как квазиодно-родные (гомогенные), обладающие в случае объемного дисперсного армирования изотропией деформационных и прочностных свойств, а в случае армирования волокнами, плоскими сетками или тканями — определенного типа анизотропией. Обычно применяют модели ортотропного или трансверсально-изотропного тела. При таком подходе речь идет о механических характеристиках, осред-ненных в достаточно больших объемах, содержащих много однотипных армирующих элементов. Другой, несравненно более сложный, но и более информативный путь состоит в раздельном рассмотрении механических свойств каждой фазы с последующим теоретическим прогнозированием свойств всего композита в целом. При этом приходится рассматривать фактически еще одну дополнительную фазу зоны сопряжения основных фаз, например, матрицы с армирующими волокнами. Механизм повреждений, развивающихся на границах фаз, обычно весьма сложен и определяется помимо свойств основных компонентов гетерогенной системы еще рядом дополнительных факторов, таких как адгезия фаз, технологические и температурные местные напряжения, обычно возникающие вблизи границ, наличие дефектов и др. Границы фаз как зоны концентраций напряжений играют особенно важную роль в развитии много- и малоцикловых усталостных повреждений композитов.  [c.37]

При необходимости подчеркнуть состав множеств D я Z далее будут использоваться и такие обозначения a D, Z] = a[, 2,...,d Z] = a D , 2,...,Z]== = a d I, 2, z] и T. П. С их помощью можно удобно записывать отдельные составные части (подматрицы) матрицы или новые матрицы, образованные на основе a[D, Z], Например, а , 2, k—l, k+l, d z] = a[D/ k), Z]—матрица, полученная из a[D,Z] в результате вычеркивания й-й строки, а d D — k, Z ], где Z — множество четных чисел (Z zZ)—матрица, в которой к тому же еще вычеркнуты все столбцы с нечетными номерами. В частности, a[k, Z] — k-я строка матрицы a[D, Z], а a[D, /] — ее /-Й столбец. Запись a[D 1, 2 + 3 + 5, 4] обозначает матрицу, в которой второй, третий и пятый столбцы сложены поэлементно и полученный суммарный столбец помещен на второе место. Пусть Zi сг Z и Z2 с= Z— подмножества множества Z, причем Z, 0 2=0 Z/", Z — обозначения столбцов, полученных как результат сложения столбцов с номерами из множеств Zi и Z2. Тогда матрица а[0] Zt, Z —(Z1UZ2), Zt  [c.88]

Таким образом, на всех стадиях определения скоростей и моментов используется один и тот же алгоритм, позволяющий легко автоматизировать весь процесс вычисления. Его основной недостаток состоит в том, как уже отмечалось выше, что он производит много лишних действий, связанных с умножением и сложением нулей при вычислении определителей ред-козаполненных матриц. Применение направленных графов и соответствующего математического аппарата [2, 21] дает возможность избавиться от этого недостатка и тем са.мым значительно сократить машинное время решения задачи.  [c.98]


Порядок матриц при транспонировании в общем случае изменяется. Сложение и вычитание матрии  [c.18]

К матрицам одного и того же порядка применимы операции сложения и вычитания. Результатом сложения (вычитания) двух матрии А и В порядка n m является новая матрица С того же порядка, каждый элемент которой jj = ajj bjj, где i - номер строки, j - номер столбца. Пусть,  [c.18]

Число критических сил по МКЭ равно степени кинематической неопределимости стержневой системы, а при формировании векового уравнения используются операции сложения, умножения и траспонирования матриц.  [c.179]


Смотреть страницы где упоминается термин Матриц сложение : [c.177]    [c.50]    [c.62]    [c.135]    [c.573]    [c.144]    [c.773]    [c.39]    [c.24]    [c.296]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.480 ]



ПОИСК



Матрица сложение матриц

Матрица сложение матриц

Сложение движений матриц

Сложение пар сил

Углы конечного вращения. 2. Ортогональные матрицы Кватернионы. 4. Спиновые матрицы Паули. 5. Дробнолинейные преобразования Сложение поворотов



© 2025 Mash-xxl.info Реклама на сайте