Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Начало вариационное Лагранжа

Вариационный принцип Лагранжа представляет собой прямой результат применения к упругому телу начала возможных перемещений. Пусть тело находится в равновесии под действием внешних сил Ft которые совер-  [c.259]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Вариационное начало Лагранжа  [c.95]

Для нахождения НДС в конце шага используем вариационное уравнение Лагранжа в приращениях. Все параметры начала шага считают--ся известными. Запишем выражение вариационного принципа в линеаризованной форме [381  [c.95]

Отметим, что примерно в это.же время в конце сороковых годов и за рубежом начали публиковаться крупные работы, посвященные исследованию вариационных задач, связанных с управлением реактивным движением. Большая часть этих исследований опиралась на уравнения Эйлера—Лагранжа, выражающие равенство нулю первой вариации 6/ оптимизируемого функционала. Таким образом, эти исследования в значительной степени сводились к той или иной модификации необходимых условий экстремума, известных в классическом вариационном исчислении и выделяющих стационарные движения, подозрительные на экстремум.  [c.183]

Интенсивное исследование численных методов решения вариационных задач оптимального управления и применение для этой цели ЭВМ началось в пятидесятых годах и развивалось, как уже отмечалось выше, параллельно с развитием общей математической теории оптимальных процессов. Основные усилия прежде всего были направлены на создание методов, использующих необходимые условия оптимальности в форме уравнений Эйлера — Лагранжа. Основные трудности, возникающие здесь, были уже кратко охарактеризованы выше в 8. Напомним их здесь еще раз, остановившись подробнее на примере краевой задачи (6.6) — (6.7). На основании принципа максимума дело сводится к следующей двухточечной задаче  [c.198]

Применение начала возможных перемещении, вариационное уравнение Лагранжа. Пусть имеется тиердое дефор.м11[)уемое тело  [c.322]

Сопоставим в заключение методы Гамильтона и Лагранжа. В гамильтоновом формализме основными величинами являются , р, и Н. Гамильтониан можно построить с помощью функции Лагранжа и q и р,. Отсюда непосредственно получаются канонические уравнения и динамические переменные. Однако в гамильтоновом формализме время все же играет особую роль по сравнению с пространственными координатами, являясь, по существу говоря, единственной независимой переменной. С одной стороны, это дает возможность провести далеко идущую аналогию с классической механикой, но, с другой стороны, именно поэтому теория оказывается релятивистски неинвариантной. Напротив, в лагранжевом формализме не вводят функции р,-, Н (хотя это и возможно). В лагранжевом методе исходят из вариационного принципа для лагранжиана системы. Из условий для его экстремума получают уравнения движения, а динамические переменные (энергия — импульс, заряд и т. п.) определяются как инварианты, соответствующие различным преобразованиям системы координат и, в случае теории полей, функций поля. В лагранжевом формализме время входит совершенно симметрично с пространством и теория с самого начала релятивистски ковариантна, но зато аналогия с механикой системы точек оказывается гораздо менее отчетливой.  [c.878]


Для уяснения смьюла принципа Лагранжа большое значение имели работы профессора Московского университета Ф. А. Слудского (1841—1897). Он показал в своих статьях, что Остроградским высказан новый вариационный принцип и что оба принципа — Лагранжа и Остро -радского одинаково справедливы Вы[)ажения начала наименьшего действия, данные этими учеными, суть выражения двух различных общих свойств движения .  [c.219]

Именно эта возможность и была реализована в 1911 г. Г. Герглотцем , который принял активное участие в разработке релятивистской механики сплошной среды и на этом пути впервые явно получил взаимосвязь Р-сим-метрия — сохранение . Вариационная структура уравнений механики сплошной среды была известна и широко использовалась, начиная с середины XIX в. (Гельмгольц, Кирхгоф, Рэлей, А. Вальтер и др.) . Вариационные принципы в релятивистской форме за пределами электродинамики были сформулированы и широко использованы, прежде всего, Планком, а затем Минковским и др. (механика точки и системы, термодинамика и т. д. ). Поэтому построение релятивистской механики сплошной среды естественно было начать с Р-инвариантного вариационного принципа, переходящего в нерелятивистском случае в соответствующий вариационный принцип классической механики. Герглотц начинает с описания среды в переменных Лагранжа, т. е. рассматривая координаты частиц среды и характеристики движения как функции начальных координат и времени t. Элемент мировой линии двух соседних мировых точек при таком описании выражается посредством квадратичной формы дифференциалов начальных координат и собственного времени = i x  [c.243]

Принцип Гамильтона, рассматриваемый как вариационный принцип стационарного действия, справедлив только для голономных систем. Невозможность непосредственного распространения интегральных принципов, установленных для голономных систем, на неголоном-ные системы была отмечена ещё Герцем [27]. Он обратил внимание на то, что не всякие две точки конфигурационного пространства могут быть соединены траекторией системы с неинтегрируемой дифференциальной связью. Первым, кто предложил интегральный принцип, пригодный для неголономных систем, по-видимому, был Гёльдер его принцип имеет форму интегрального равенства, не являющегося условием стационарности функционала он был получен при предположении перестановочности операций d w 5 (см. заметку 16). При этом, во-первых, варьированные траектории не удовлетворяют уравнениям неголономных связей, и во-вторых, уравнения движения неголономной системы не совпадают с уравнениями Эйлера вариационной задачи Лагранжа. Обсуждению этих двух вопросов посвящена обширная литература с начала двадцатого века и до настоящего времени. Приведём некоторые результаты [101.  [c.142]

Уравнение (8.42) не может быть получено из начала возможных перемещений, т. е. из вариационного уравнения Лагранжа. Статические граничные условия для функции F не являются следствием вариационного уравнения (16.59) и должны быть удовлетворены заранее, если, пользуясь этим уравнением, искать приближённое решение задачи. С целью составления статических граничных условий внесём (8.34) в граничные условия, что даёт  [c.455]

В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


При постановке новых проблем исходным пунктом в большинстве случаев является начало возможных перемеш ений, приводяш ее к вариационной формуле Лагранжа для данного объекта. Если задачу целесообразно формулировать в перемещениях, то на этом функции вариационного исчисления при решении рассматриваемой задачи и кончаются. В нелинейной же теории оболочек самым распространенным вариантом являются уравнения типа Кармана, сформулированные в смешанной форме (через прогиб и функцию напряжения). Ясно, что различным формулировкам соответствуют разные вариационные формулы. Получение таких формул нередко представляет достаточный интерес (хотя бы для нестрогого обоснования процедуры метода Бубнова — Галеркина). Например, большое внимание было уделено обобщению вариационного принципа Кастильяно на нелинейную теорию равновесия пластинок и оболочек (Н. А. Алумяэ, 1950 К. 3. Галимов, 1951, 1958).  [c.235]


Смотреть страницы где упоминается термин Начало вариационное Лагранжа : [c.279]    [c.248]    [c.274]    [c.327]    [c.144]   
Курс теории упругости Изд2 (1947) -- [ c.327 ]



ПОИСК



Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте