Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Правила отбора для инфракрасных спектров молекул

Для молекул, обладающих симметрией Ооо/,, дополнительное правило отбора, запрещающее переход между симметричными и антисимметричными уровнями и отличающееся от правила отбора в инфракрасном спектре, не противоречит правилу отбора (1,16) для переходов между положительными и отрицательными уровнями. Поэтому молекулы этого типа также имеют вращательные комбинационные спектры.  [c.33]

Правил отбора для разрешенных электрических дипольных переходов. Особенно важны правила отбора для переходов между вращательно-инверсионными состояниями. Из табл. А. 9 видно, что Мг и (Мх, Му) относятся к типам симметрии Л 2 и Е соответственно, а Г совпадает с Л". Следовательно, переходы в основных полосах типа активных в инфракрасном спектре, удовлетворяют правилам отбора А/С = 1 и Д/= О, 1, а переходы вращательно-инверсионного спектра подчиняются правилам отбора АК =0, AUi — нечетное и Л/ = О, 1. Так как состояние с Ui = 1 очень близко к состоянию с Ui = О, горячие переходы из состояния с Ui = 1 так же важны, как и переходы из основного состояния с 01 = 0. На рис. 12.10 показаны низкие вращательные уровни состояний с Ui = О, 1, 2, 3 и некоторые разрешенные в электрическом дипольном поглощении вращательно-инверсионные переходы, показанные сплошными линиями. Полосы переходов с Ui=3- 0 и 21 в инфра-. красном спектре, соответствующие полосе с U2 == 1 - О жесткой неплоской молекулы, полностью перекрываются. В микроволновом спектре поглощения активны переходы типа Ui = 0-<-l и 1- -0 три перехода такого типа указаны на рис. 12.10 эти переходы соответствуют чисто вращательным переходам в жесткой неплоской молекуле. Вращательные переходы в состояниях с ui = О или 1 запрещены, однако колебательно-вращательные  [c.393]


Инфракрасный вращательный спектр. Инфракрасный вращательный спектр, как и в ранее рассмотренных случаях, может возникнуть только если молекула обладает собственным дипольным моментом. Поэтому молекулы с симметрией Кл (такие, как С Н , N20,4) не дают инфракрасного вращательного спектра подобный спектр имеют только молекулы с симметрией С. , такие как Н.2О, Н СО, Н Оа, или молекулы с еще более низкой симметрией. В случае наличия собственного дипольного момента мы имеем, как и всегда для дипольного излучения, правило отбора для числа У.  [c.69]

Вид полносимметричных полос V, и V молекулы NHз весьма своеобразен, так как они расщепляются на две. Подобное расщепление имеет место и для полосы молекулы ЫОз, однако величина расщепления значительно меньше. Расщепление полосы V], повидимому, слишком мало, чтобы быть обнаруженным. Как было показано ранее (стр. 240), это удвоение связано с наличием двух положений равновесия атома К, по обе стороны от плоскости Нз или Вз инверсионное удвоение). Там же (стр. 241) было показано, что все колебательные уровни расщепляются на два подуровня нижний—положительный и верхний — отрицательный, причем величина расщепления — наибольшая для тех уровней, которые соответствуют колебаниям с наибольшим изменением высоты пирамиды. Правила отбора в инфракрасной области разрешают переходы —(см. стр. 278), и поэтому каждая полоса имеет две составляющие, причем расстояние между пими равно сумме расщеплений верхнего и нижнего уровней (см. фиг. 78). В комбинационном спектре разрешены переходы- -ч—>4 >-- —> и, расстояние между линиями  [c.319]

Правила отбора. Аналогично случаю двухатомных молекул, можно считать с хорошей степенью приближения, что правила отбора для чисто колебательного спектра и для чисто вращательного спектра остаются неизменными и при взаимодействии колебания и вращения (доказательство см. в разделе 26). Таким образом, также и для вращательно-колебательного спектра в инфракрасной области происходят только те колебательные переходы (см. табл. 55), для которых составляющая собственного момента относится к типу симметрии 1 или составляющие и Му относятся к типу симметрии П (где значок и для точечной группы Соо следует опустить), т. е. только те колебательные переходы, для которых  [c.408]

В литературе до сих пор отсутствует подробное исследование правил отбора в комбинационном спектре для случая свободного или заторможенного внутреннего вращения. Так как ни одна из комбинационных полос молекул, обладающих внутренними вращениями, до сих пор не разрешена, то мы не будем рассматривать их возможную структуру. Тем не менее очевидно, что эта структура также связана со структурой комбинационных полос обычного симметричного волчка, подобно тому как соответствующая структура инфракрасных полос молекул с внутренним вращением связана со структурой инфракрасных полос симметричного волчка.  [c.530]


Как и для инфракрасных спектров, обш ее правило отбора может быть еще более упрощено для спектров поглощения, поскольку для большинства устойчивых молекул основное состояние полносимметрично. Чтобы в этом случае разрешенный переход произошел в поглощении, по правилу отбора верхнее состояние просто должно быть того же тина симметрии, что и одна из компонент дипольного момента.  [c.129]

Правила отбора. Правила отбора для вращательного квантового числа при электронных переходах в молекулах типа симметричного волчка те же, что и для инфракрасных спектров, поскольку в соответствии с выражением (11,15) они определяются теми же самыми матричными элементами направляющих косинусов  [c.222]

В случае молекул с низким барьером торсионная структура колебательных состояний выглядит как дополнительная вращательная структура. Поэтому для интерпретации вращательно-торсионной структуры колебательных переходов требуется знание правил отбора по квантовым числам Ка, Кс и Ki. В инфракрасном спектре разрешены переходы, удовлетворяющие условию симметрии  [c.400]

Под влиянием межмолекулярных сил может измениться расположение атомов в молекуле, что приведет к нарушению ее симметрии. Понижение симметрии системы сопровождается изменением правил отбора, в результате чего в колебательных спектрах (инфракрасном или спектре комбинационного рассеяния) жидкостей (растворов) возможно появление полос, запрещенных для паров.  [c.138]

Инфракрасный спектр. Как всегда, чисто вращательный спектр может возникнуть лишь в том случае, если молекула обладает собственным дипольным моментом. В молекулах, обладающих осью симметрии, собственный дипольный момент обязательно ориентирован по этой оси. Поэтому если молекула имеет две или несколько (несовпадающих друг с другом) осей симметрии, то ее собственный дипольный момент должен равняться нулю. Это справедливо для всех молекул, являющихся сферическими волчками вследствие своей симметрии, т. е. для молекул, относящихся к любой кубической точечной группе, например, для молекул СН,,, и др, Следовательно, такие молекулы не обладают вращательным инфракрасным спектром. Только в том случае, когда молекула случайно является сферическим волчком, сна может иметь собственный дипольный момент, отличный от нуля, и, следовательно, давать инфракрасный вращательный спектр. Тогда для квантового числа / справедливо простое правило отбора с О, 1, причем достаточно рассматривать аере-  [c.54]

Так как при малых амплитудах колебания многоатомных молекул могут рассматриваться как наложение гармонических колебаний, то в данном случае приложимы результаты, полученные для двухатомных молекул, при использовании аппроксимации гармонических осцилляторов (см. Молекулярные спектры I, гл. III, 1). Поэтому как для инфракрасных, так и для комбинационных спектров для каждого нормального колебания V справедливо правило отбора  [c.270]

Вследствие того что осцилляторы в рассматриваемом приближении являются независимыми, одновременно не могут происходить переходы, соответствующие двум или нескольким колебаниям. Аналогично случаю двухатомных молекул. при переходах в инфракрасном спектре изменение колебательного квантового числа Дг),- = 1, может происходить только при колебаниях, связанных с изменением дипольного момента, в комбинационном же спектре это правило отбора соответствует колебаниям, связанным с (линейным) изменением поляризуемости. При рассмотрении формулы (2,61) для колебательных уровней энергии, применимой в нашем приближении, видно, что частоты инфракрасных полос и комбинационных линий равны действительным частотам колебаний, выраженным в см  [c.270]

Нри данном рассмотрении мы не будем учитывать влияние эффекта Яна — Теллера на вращательные энергетические уровни. Как было показано в гл. I, разд. 3,6, кориолисово взаимодействие первого порядка расщепляет каждый вращательный уровень состояния / о на три компоненты (/), (/) и Р - (/), энергия которых дается выражением (1,136). Как и в случае инфракрасного спектра (см. [23], стр. 481), для уровней Р Р - существует правило отбора, в какой-то мере аналогичное правилу отбора для уровней ( + 0, (—Ц молекул тина симметричного волчка. Теллер [1196] показал, что могут происходить только следующие переходы  [c.243]


Почернение фотопластинки 289—294 Правила отбора для инфракрасных спектров молекул 758—761 Правило Беера 383  [c.815]

Вначале рассмотрим правило отбора для инфракрасных спектров. Согласно представлениям квантовой механики динольный момент молекулы определяется матрицей, элементы которой имеют вид  [c.758]

Особенно существенно то, что сформулированное выше правило отбора для инфракрасного спектра (но не для комбинационного спектра) разрешает также переход с одного подуровня данного колебательного уровня на другой подуровень (см. фиг. 78), который, в соответствии с видом собственных функций (см. фиг. 12,6) является очень интенсивным. Такой переход действительно был наблюден Клейтоном и Вильямсом [215] для основного состояния молекулы ННз в области очень коротких радиоволн при Х. = 1,25 см (соответственно 0,8 см )> что находится в полном согласии с величиной, ожидаемой из результата удвоения для обычной колебательной полосы. Наблюдение этого  [c.278]

V, молекулы точечной группы V полная симметрия вращательных уровней 491, 493 правила отбора в колебательных спектрах 274 правила отбора для вращательных спектров 469, 498, 199 типы инфракрасных полос 499 числа колебаний каждого типа симметрии 153 ( >а), точечная группа 17, 23, 538 отношение к типам симметрии групп У,1, С 255 типы симметрии и характеры 120, 129, 141 У , высота потенциального барьера для внутреннего вращенпя крутильных колебаний (см. также Потенциальный барьер) 241, 526, 527 У/1, молекулы точечной группы правила отбора 274  [c.639]

Инфракрасный спектр. Как и в случае линейных молекул, инфракрасный вращательный спектр может появиться в дипольном излучении, лишь если молекула обладает собственным дипольным моментом. Когда, как о5ычно, ось симметричного волчка совпадает с осью симметрии, то собственный ди-польный момент обязательно ориентирован по этой оси. В этом случае получаются следующие правила отбора для чисел К и J (см. ниже)  [c.43]

Благодаря этому соответствию мы можем применять для обеих моделей одни и те же обозначения основных частот, а именно те, которые были приведены в табл. 11-) для молекулы диметилацетилена. Конечно, каждому вырожденному колебанию линейной модели соответствуют два невырожденных колебания изогнутой модели. Правила отбора для моделей ч Даны в табл. 11-1. Для модели С ), частоты типов Ag и 5 -должны быть активны в комбинационном спектре (частоты - поляризованы), частоты и -в инфракрасном спектре. Для свободного вращенпя разрешены все переходы.  [c.387]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]

Далее существуют правила отбора для полных (электронно-колебательновращательных) типов симметрии, которые аналогичны правилу. 9-е— - а для линейных молекул и которые соблюдаются так же строго. Если рассматривать полный тип симметрии соответствующей вращательной подгруппы, то правило отбора будет таким же, как и для инфракрасных спектров и спектров комбинационного рассеяния (см. [23], стр. 444), т. е. что полный тип симметрии при переходе не меняется  [c.222]

Необходимо отметить, что молекула СаНО не имеет центра симметрии и поэтому нее основные частоты разрешены как в инфракрасном спектре, так и в спектре комбинационного рассеяния. И действительно, все они наблюдены в инфракрасном спектре (см. табл. 69). Правила отбора, справедливые для молекул СаНз и СзОа, даже приближенно не верны для молекулы С НО. Это становится особенно ясным из фиг. 87, где для молекул С Но и СгНО изображены в масштабе амплитуды колебаний атомов при колебаниях и (но расчетам Фостера, см. Герцберг, Пата и Ферлегер [439]).  [c.317]

Формальдегид, Н СО и О СО. Обычно предполагается, что молекула формальдегида имеет плоскую симметричную форму типа У (точечная группа С , см. фиг. 24), хотя априори (если не учитывать теорию направленных валентностей) возможна и форма пирамиды только с одной плоскостью симметрии (точечная группа С ). Однако последнее предположение безусловно иск.тючается, так как во вращательной структуре инфракрасных и ультрафиолетовых полос наблюдается чередование интенсивностей (3 1) см. стр. 509 и [288]). Было бы трудно прийти к такому выводу на основе только одного колебательного спектра, так как для обеих моделей все шесть основных частот (см. фиг. 24) активны как в инфракрасном, так и в комбинационном спектрах (см. табл. 55). Хотя для обеих моделей должны получаться некоторые различия в правилах отбора для составных частот инфракрасного спектра и в поляризации основных комбинационных частот, но имеющиеся экспериментальные данные ) не позволяют прийти к сколько-нибудь надежному выводу. Из имеющихся данных о колебательном спектре существенное подтверждение плоской модели дает лишь применение правила произведений к наблюденным значениям основных частот молекул НзСО и В СО. Соответствуюп1ее соотношение хорошо выполняется лишь для плоской модели. В дaльнeйпJeм мы будем исходить именно из этой модели.  [c.324]


Весьма вероятно, что после того, как будут выполнены более подробные исследования спектров других молекул, будет найдено много новых запрещенных колебательных переходов, относящихся не только к тетраэдрическим молекулам, но и к молекулам иных типов. Их действительное появление в спектрах SiHj и GeHi заставляет нас при интерпретации слабых инфракрасных и комбинационных частот считаться с реальной возможностью нарушения колебательных правил отбора даже в газовой фазе (см. случай молекулы jHi стр. 352). Таким образом, появление в инфракрасном спектре и спектре рассеяния некоторых частот, которые для данной структуры (точечной группы) молекулы запрещены правилами отбора, не обязательно исключает эту структуру. Ее следует считать исключенной лишь в том случае, когда можно показать, что соответствующие полосы не могут возникнуть за счет кориолисова взаимодействия. К счастью, из иравила Яна (см. стр. 404) следует, что далеко не все запрещенные переходы могут стать активными за счет кориолисова взаимодействия. Так, например, альтернативный запрет для молекул с центром симметрии (см. стр. 277) точно выполняется. даже при учете этого взаимодействия.  [c.487]

Как и в инфракрасных спектрах, в зависимости от того, какое из трех правил отбора (11,101), (11,102) или (11,103) соблюдается [или, что эквивалентно, правило отбора (11,97), (11,98) или (11,99)], наблюдаются полосы типа Л, типа В или типа С. В томе И ([23], стр. 500, 505 и 511) приведены схемы энергетических уровней для инфракрасных переходов этих трех типов. Они ничем не отличаются от соответствующих схелс для электронных переходов, и поэтому нет необходимости ириводть их еще раз (однако следует обратить внимание на фиг. 107, где показана полоса типа С для слегка асимметричного волчка). Тем не менее для объяснения структуры полос молекул типа сильно асимметричного волчка, на фиг. 110 и 111 схематично приводятся различные подполосы полос тина А и тина С в предположении, что в обоих состояниях А =20, 145, В = 11, 185, С 7,065 см . Для обозначения ветвей применяются два верхних индекса, помещаемых слева от символов P,Q ш К [которые указывают на значение А/ (или АА)]. Первый из них дает значение АКа, второй — значение АК,.. Так, существуют ветви R, qpR .. . и аналогичные ветви типа и Р в полосах типа 4, а  [c.261]


Смотреть страницы где упоминается термин Правила отбора для инфракрасных спектров молекул : [c.618]    [c.623]    [c.278]    [c.327]    [c.55]    [c.300]   
Прикладная физическая оптика (1961) -- [ c.758 , c.761 ]



ПОИСК



Инфракрасные спектры

Инфракрасные спектры молекул

Отбор

По инфракрасная

Правила отбора

Правила отбора для инфракрасных

Спектр молекулы



© 2025 Mash-xxl.info Реклама на сайте