Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охрупчивание слоев покрытия

При измерении пораженной площади не учитывают дефекты, которые не оказывают непосредственного влияния на защитное действие покрытия, например меление, изменение оттенка, охрупчивание или ухудшение адгезии отдельных слоев покрытия, кроме его отслаивания и коррозии поверхности в результате механических повреждений (ЧСН 03 8250).  [c.112]

Описанный выше неблагоприятный процесс плавления покрытия электрода можно использовать и для достижения положительного эффекта. Так, создание многослойного покрытия, в котором износостойкие частицы расположены в наружном слое, позволит в известной степени избежать их растворения в расплаве, что уменьшит охрупчивание матрицы сплава и сохранит износостойкие частицы от разрушения при высоких температурах дуги. Внутренний слой покрытия должен быть достаточно тугоплавким, чтобы уменьшить эффективную толщину покрытия.  [c.706]


Высокие защитные свойства хромового покрытия при толщине слоя 40-45 мкм достигаются за счет низкой водопроницаемости карбидного слоя, а также малой чувствительности к водородному охрупчиванию обезуглероженного слоя, образующегося под карбидной зоной. Цинковые покрытия обладают, также высокой защитной способностью. Важную роль в повышении защитного зффекта цинковых покрытий играет химический состав цинкового слоя, зависящий от состава исходного сырья.  [c.89]

Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к AI2 О3 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами.  [c.111]

Вполне вероятно, что причина охрупчивания заключена в возникновении напряженного слоя на границе покрытие—металл. На механические свойства ниобия при комнатной температуре может оказывать влияние не только наличие самого покрытия, но и термообработка, сопровождающая процесс осаждения покрытия. Для выяснения влияния этого фактора было проведено сравнение свойств ниобия с покрытием и без покрытия, прошедших одинаковую термическую обработку.  [c.103]

Нанесение на поверхность стальных изделий гальванических покрытий или травление в кислотах для очистки ее связано с опасностью насыщения поверхности водородом, что также вызывает охрупчивание. Если водород находится в поверхностном слое, то он может быть удален в результате нагрева при 150—  [c.153]

Степень появления вспучиваний или охрупчивания зависит от количества адсорбированного водорода, которое зависит от площади поверхности металла, покрытой слоем Наде. Многие изменяемые факторы, включающие pH, температуру, природу анионов и состояние стали, оказывают заметное влияние на абсорбцию водорода [2]. К тому же определенные элементы или химические соединения, присутствующие в растворе в ничтожных количествах (следы), например 5, Р, Аз, 5е (называемые отравителями ), имеют способность замедлять (или отравлять ) реакцию химической десорбции и, таким образо.м, увеличивают площадь, покрытую водородом и соответственно абсорбцию. Прн травлении присутствие указанных элементов может привести к заметному увеличению площади, покрытой Наде, даже если при этом понижается ско-  [c.264]


Однако наличие напряжений и трещин в покрытии и его способность влиять на водородное охрупчивание основного металла может иметь не меньшее значение, чем электрохимическая полярность. Так, в то время как цинк, нанесенный в надлежащих условиях, должен обеспечить определенный минимум протекторной защиты в дефектных участках покрытия, при горячем методе оцинкования может получиться толстый слой сплава, в котором легко образуются трещины в процессе действия знакопеременных напряжений эти трещины могут распространиться внутрь стали и даже при отсутствии коррозии усталостное разрушение наступит быстро. Цинк можно наносить методом распыления, если шероховатость, создаваемая на изделии до нанесения покрытия, не вызовет слишком большого понижения усталостной прочности или гальваническим путем, если при этом можно избежать водородного охрупчивания. Иные предпочитают кадмиевое покрытие, но при этом может быть закрыт выход водороду, оставшемуся в металле от предварительного травления поэтому при травлении требуется так же тщательно соблюдать режим, как и при нанесении покрытия. Можно было бы думать, что применение анодного травления (взамен травления в кислоте) устранит эти трудности, однако известны случаи, когда анодная обработка сама по себе приводит к ухудшению сопротивляемости усталости. Хромовое покрытие само может содержать большие количества водорода в одном французском методе водород затем удаляется путем, который по существу представляет из себя слабую анодную обработку [33].  [c.663]

Прочность при изгибе от нанесения покрытий, как правило, повышается за исключением случая получения покрытий па твердых сплавах высокотемпературными методами, где имеет место снижение предела прочности при изгибе на 20-40%. Последнее связано с образованием толстой переходной зоны между покрытием и основной (от 2 до 6 мкм), вызывающей охрупчивание и разупрочнение. На быстрорежущей стали снижение прочности на изгиб наблюдается при превышении толщиной покрытия значений 6-8 мкм вследствие длительного воздействия высоких температур плазменного потока, вызывающих структурно-фазовые изменения в металле. Аналогично при больших толщинах покрытия снижается ударноциклическая прочность твердых сплавов из-за внутренних дефектов (микропор) в слое покрытия.  [c.166]

Нанесение па поверхность стальных изделий гальванических покрытий или травление в кислотах для очистки ее связано с опасностью пасыи1еиия стали водородом, что также вызывает охрупчивание. Р сли водород находится в поверхностном слое, то он может быть удален в результате нагрева при 150—180 С, лучше всего в вакууме (I—К) Па). Наводораживание и охрупчивание возможно и при работе с га.гп в контакте с водородом, особенно при высоком давлении. Широко применяемые в последние годы выплавка или разливка в [ акууме значительно уменьшают содержание водорода и л,ругпх газов в стали  [c.131]

Хрупкие разрушения металла подогревателя со стороны греющего пара отмечались при работе блоков на нейтрально-окислительном водном режиме [91. Змеевики и перегородки пароохладителей поврежденных ПВД были покрыты слоем легкоотслаива-ющихся продуктов коррозии (до 4 мм). Наблюдалось охрупчивание металла и его обезуглероживание в зоне повреждений, причем наименьшее количество углерода обнаружено в металле, контактирующем с паром. В нем обнаружено также повышенное содержание водорода. Основная причина этого— коррозия с водородной деполяризацией, вызванная действием пузырьков диоксида углерода, прилипаемость которых способствует упариванию  [c.173]

Как видно из рис. I. 34, нанесение рениевого покрытия приводит к незначительному снижению пластичности и повыщению прочности. Увеличение толщины рениевого покрытия усиливает охрупчивание. Ввиду того, что металлографический анализ и рентгеновский фазовый анализ не подтвердили наличия диффузионного слоя после нанесения рениевого покрытия, нельзя считать, что охрупчивание в данном случае вызывается образованием хрупкого переходного слоя.  [c.102]

Широкое применение для соединения тугоплавких металлов с графитом нашли высокотемпературная пайка в печах с контролируемой атмосферой и пайко-сварка с использованием электронного луча и газоэлектрической дуги. Предотовращение науглероживания и охрупчивания металла достигается предварительным нанесением на соединяемые поверхности покрытия из пластичных металлов, не образующих в контакте с графитом сплошных хрупких карбидных диффузионных слоев, а также применением припоев с основой из пластичных металлов, инертных по отношению к графиту, и введением в них карбидообразующих добавок для обеспечения смачивяечости.  [c.278]


Образование сплошной оксидной пленки NbjOj, не обладающей защитными свойствами, происходит с постоянной скоростью роста. Поэтому легирование твердого раствора направлено на создание поверхностного защитного слоя и такого химического состава основного сплава, который обеспечивал бы постоянную подпитку покрытия необходимыми химическими элементами и, таким образом, сохранность защитного слоя. Чтобы избежать потери прочности, легирование должно быть тщательно сбалансировано. Защитное покрытие требуется даже для обработки сплавов при температурах >424 °С в окислительных средах, дабы минимизировать растворение кислорода, способного вызвать охрупчивание.  [c.311]

Для защиты ниобия от окисления в процессе нагрева под де( юрма-цию применяются установки с нейтральной атмосферой (аргон или гелий). Промежуточный отжиг деформированных полуфабрикатов проводят в вакуумных печах. Можно применять также покрытия жаростойкими эмалями, напыление металлами, дающими защитные окислы (хромом, алюминием), или оболочки из нержавеющей стали. Многократные и продолжительные нагревы в процессе обработки не келательны, так как приводят к загрязнению металла на значительную глубину и охрупчиванию его с образованием трещин в поверхностном слое. Ниобий рафинируют от поглощенных газов нагреванием в вакууме не ниже 1 10" мм рт. ст. При нагреве до 700—900° С из металла выделяется водород, а при 1200—  [c.549]

Легирование снижает пластичность хрома и значительно повышает сопротивление деформированию. По зтому большинство сплавов хрома может успешно деформироваться только методом прессования при 1600—1400° с высокими сжимаюш,ими напряжениями. Ввиду взаимодействия хрома с а.зотом, кислородом и др. активными газами нагрев слитков и заготовок под деформацию выше 900—1000° следует проводить в печах с нейтральной (аргон, гелий) или защитной (водород) средой, стеклянных или соляных ваннах. Нагрев хрома ниже 700—800° в электропечах с воздушной атмосферой не вызывает заметного окисления и охрупчивания. Защита металла от воздействия газов до 1200—1300° может быть достигнута путем помещения слитков и заготовок в металлич, оболочку или покрытием их жаростойкими эмалями. Металлич. оболочка, кроме зап итного действия, значительно улучшает термомеха-нич. условия деформации, т. к. при зтом достигается защита поверхности нагретой заготовки от быстрого охлаждения при контакте с инструментом, уменьшается коптактное трение и возникают сжимающие напряжения в поверхностном слое заготовки.  [c.420]

Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из оксида алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к AI2O3 или окислением части нанесенного алюминиевого покрытия.  [c.54]

Припои системы Ag—Си—Sn пластичны и при определенном соотношении компонентов более легкоплавки, чем припой ПСр72, но обладают примерно в 10 раз меньшей электропроводностью, чем эвтектический припой Ag—Си. Припой этой системы состава Си — 60% Ag — 10 / Sn имеет температуру плавления на 80 С ниже, чем припой ПСр72, их = 598-7-713 5 С, интервал кристаллизации 115 С. Сталь и ковар в контакте с жидким припоем такого состава склонны к охрупчиванию и поэтому должны быть перед пайкой гальванически покрыты слоем никеля (3— 5 мкм). Паяные соединения из стали 50 после пайки в водороде имеют Т(.р = 14,9 0,5 кгс/мм , а после пайки в газовом пламени 17 2 кгс/мм , т. е. ниже, чем у соединений из той же стали, паянных припоем ПСр72 = 18,3 кгс/мм ) [53].  [c.116]

С развитием триботехнического материаловедения возник ряд новых проблем анализа структуры и свойств поверхностей, прогнозирования их эксплуатационных характеристик. С одной стороны, многие методы поверхностной обработки затрагивают слои микронной и субмикронной толщины. Все более широкое распространение получают такие методы воздействия, которые приводят к формированию метастабильных, неравновесных структур, непригодных для исследования стандартными методами и методиками. Достаточно упомянуть метастабильные растворы и фазовые выделения при ионной имплантации, сервовитную пленку, возникающую при избирательном переносе, специфические по структуре слои, возникающие при реализации эффекта аномально низкого трения, столбчатую структуру ионно-плазменных покрытий и т. д. С другой стороны, в последние годы открыты новые физические явления, протекающие вблизи межфазных границ раздела и влияющие на фрикционные свойства материалов. Двумерная поверхностная диффузия характеризуется небольшой энергией активации и в определенных условиях существенно влияет на формирование поверхностной топографии, схватывание, распространение смазочной среды. Поверхностная сегрегация может радикальным образом изменить адгезионные и адсорбционные характеристики контактирующих материалов. Известно [12], что в сплаве медь — алюминий однопроцентной добавки А1 достаточно для того, чтобы при незначительном нагреве ( 200" С) произошла сегрегация алюминия к поверхности. В результате наружный слой сплава состоит исключительно из атомов алюминия. Сегрегация бора к межзеренным границам борсодержащих сталей, происходящая при неправильно выбранных режимах термообработки, вызывает резкое охрупчивание материала. Поверхностная сегрегация атомов свинца рассматривается как причина хорошей обрабатываемости свинцовистых сталей.  [c.159]

Хромовые покрытия, пожалуй, больше, чем иные гальванические осадки, оказывают влияние на механические свойства стальной основы. Учитывая исключительно прочное сцепление хрома со сталью, эту систему можно рассматривать как биметалл, свойства которого в значительной мере определяются свойствами покрытия. Если осадок хрома оказывает неблагоприятное влияние, необходимо знать пути его уменьшения. Блестящие осадки, полученные при высокой плотности тока и сравнительно низкой температуре, менее пластичные и более хрупкие, чем молочные, формированные при низкой плотности тока и повышенной температуре. Не всегда очень твердый слой хрома отличается высокой износостойкостью и поэтому оптимальные условия получения осадков, обладающих этими свойствами, неидентичны. Сорбция металлом выделяющегося при электролизе водорода приводит к охрупчиванию стали. Понижение плотности тока и повышение температуры уменьшает интенсивность этого процесса. Склонность стали к наводороживанию изменяется с ее составом и состоянием поверхности. Так, сталь У8А при хромировании поглощает больше водорода, чем высоколегированная, а грубообрабо-танная поверхность — больше, чем имеющая высокий класс шероховатости. Хромирование понижает предел выносливости стали,  [c.159]


Кадмиевые гальванические покрытия широко используют для защиты высокопрочных сталей, например для шасси самолетов, и поэтому большинство исследований направлено на устранение возникающего при этом водородного охрупчивания. Известно, что выход по току увеличивается при использовании высоких плотностей тока и определенного соотношения ионов в гальванической ванне. Тройяно [7] рекомендовал для исключения водорода первоначально при большой плотности тока наносить очень тонкое электролитическое кадмиевое покрытие (0,0025 мм), подвергать его горячей сушке, а затем обычным способом наращивать покрытие до требуемой толщины (0,0125 мм). Он предположил, что очень тонкое покрытие будет достаточно тонким н пористым, и это даст возможность легко и быстро избавиться от водорода в процессе горячей сушки. Но в дальнейшем при возобновлении процесса электроосаждения этот слой будет действовать как эффективный барьер для абсорбции водорода. Этот метод широко применяют на практике при нанесении гальванических покрытий из цианистых ванн при высоких плотностях тока, а с целью удаления абсорбированного водорода используют горячую сушку в воз-  [c.263]

Механизм. Механизм коррозионного растрескивания в водных средах не известен. С помощью кинетического механизма переноса массы [19] предприняты попытки объяснить причину необыкновенного явления — появления высокой концентрации ионов 1 в вершине трещины, которая приводит к образованию слоя (или слоев) хлорида титана. Это способствует зарождению грещины в решетке сплава, находящейся под действием растягивающей составляющей объемных напряжений. Водородное охрупчивание [20] связано с разрядом водорода на поверхностях в вершине трещины, свободных от пленки или покрытых очень тонкой окисной пленкой. Внедрение водорода в деформируемые объемы металла впереди развивающейся трещины приводит к водородному охрупчиванию пластически деформируемых при малых скоростях участков металла. Последовательно снижение пластичности повторяется от зерна к зерну по мере развития трещины. Неравномерный характер распространения трещины обнаружен методом акустической эмиссии [21] и фрактографи-ческими исследованиями [22]. Поскольку подвижность водорода много меньше, чем наблюдаемые скорости растрескивания, было предположено, что при зарождении трещины в областях, охрупченных за счет абсорбированного водорода, трещина может развиваться вне этих областей за счет механических факторов на определенную глубину. В соответствии с этим положением находятся обычные наблюдения, заключающиеся в том, что самые высокие скорости растрескивания соответствуют самым прочным и хрупким сплавам.  [c.275]

Металлизация — наиболее приемлемый способ нанесения покрытий, поскольку при этом не происходит наводороживания и связанного с ним охрупчивания стали. Этот метод отличается простотой технологии, позволяет наносить практически покрытия любой толщины на различные металлы и сплавы, а также на детали больших размеров. Наиболее широкое распространение получила металлизация цинком, сплавом алюминий — цинк и алюминием. Следует отметить, что при нанесении указанных покрытий металлизацией не образуется поверхностных диффузионных слоев, наличие которых М10жет приводить к ухудшению механических свойств сталей.  [c.240]

Высокое качество сцепления напыленного ниобия с подложкой (в отдельных случаях прочность выше 8 кГ/мм ), возможно, связано с образованием на поверхности раздела между основным материалом и напыленным покрытием соединения NbFe2. Можно предположить с большой вероятностью, что промежуточный слой, присутствующий у поверхности раздела и особенно ясно видимый на микрофотографиях нетравленных структур, является интерметаллическим соединением ниобия и железа. Дальнейшие исследования с использованием электроннооптических приборов и микроанализаторов прояснят природу механизма сцепления. Увеличенные количества кислорода в защитном газе вызывают охрупчивание ниобиевых напыленных покрытий. Микротвердость металла покрытия растет от 180 до 340 кГ/мм . До какой степени кислород, смешанный с аргоном высокой чистоты, будет улучшать смачивание при уменьшении пластичности, в настоящих экспериментах не было определено в связи с нарушением сцепления покрытия с подложкой. Можно предположить, однако, что эффект охрупчивания преобладает. Гомогенность напыленных покрытий хорошая. Только слоистая структура указывает, что покрытие получено напылением. Прослойки материала любого типа, окисные и неметаллические включения почти полностью отсутствуют. Напыленные плазмой ниобиевые покрытия имеют более тонкую структуру, чем напыленные дугой в сравнимых условиях это происходит, как и при напылении титана, благодаря небольшому начальному размеру частиц ниобиевого порошка, который составлял около 30 мкм.  [c.180]


Смотреть страницы где упоминается термин Охрупчивание слоев покрытия : [c.197]    [c.279]    [c.176]    [c.49]    [c.190]    [c.422]    [c.125]    [c.173]   
Защита от коррозии на стадии проектирования (1980) -- [ c.279 ]



ПОИСК



Охрупчивание



© 2025 Mash-xxl.info Реклама на сайте