Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали Усилия — Экспериментальное определение

Проведенное Уральским политехническим институтом экспериментальное определение усилий в стане холодной прокатки труб ХПТ-75 также показало целесообразность, больше того — необходимость подобных исследований машин новых конструкций. В итоге работы были получены данные, позволившие сделать вывод о возможности значительного увеличения производительности стана ХПТ-75 и уменьшения износа калибров, а также установить условия, при которых можно улучшить работоспособность деталей и узлов стана и повысить удельную производительность стана по отношению к его весу.  [c.182]


В соударяющихся деталях механизмов и машин изменение усилия и напряжений происходит в весьма короткое время, оцениваемое величинами, меньшими 0,001 сек. Это обстоятельство наряду со значительной скоростью движения деталей и сложной зависимостью возникающих деформаций от различных факторов (массы и упругости деталей, зазоров, условий контакта) до последнего времени исключало возможность надежного экспериментального определения напряжений и усилий при соударении деталей. Существующие расчетные методы могли давать практически удовлетворительные результаты лишь в простейших случаях.  [c.138]

Жесткость, или упругую характеристику элементов системы СПИД, определяют расчетом (для простых деталей) и экспериментально (для сложных узлов) при статическом нагружении системы. Жесткость узла зависит от нанравления и точки приложения силы. Поэтому исследования узла проводят в условиях, наиболее полно моделирующих реальные условия последующей обработки. В частности, к узлу прикладывают не только радиальную Ру, зо и вертикальную Р и осевую Рх составляющие усилия резания, назначают определенный вылет резца, положение пиноли задней бабки. Отжатия передней и задней бабок токарного станка определяют, включая отжатия центра и стыка центр — центровое гнездо детали. Полученная характеристика позволяет оценить качество изготовления и сборки данного узла. При высокой точности изготовления ветви характеристики располагаются ближе одна к другой, чем при низкой точности изготовления.  [c.45]

Плоское напряженное состояние имеет место, когда тонкая плоская деталь нагружена усилиями, действующими в ее плоскости. В качестве примера можно привести плоские модели сварных соединений, используемые для экспериментального определения в них местных напряжений.  [c.64]

Величина запасов прочности при расчете на выносливость зависит от точности определений усилий и напряжений, от однородности материалов, качества технологии изготовления детали и других факторов. При повышенной точности расчета (с широким использованием экспериментальных данных по определению усилий, напряжений и характеристик прочности), при достаточной однородности материала и высоком качестве технологических процессов принимается запас прочности я = 1,3- 1,4. Для обычной точности расчета (без надлежащей экспериментальной проверки усилий и напряжений) при умеренной однородности материала п=1,4-ь1,7. При пониженной точности расчета (отсутствии экспериментальной проверки усилий и напряжений) и пониженной однородности материала, особенно для литья и деталей значительных размеров, п = = 1,7 3,0.  [c.678]


Повышение скоростей движения машин технологического назначения (тракторов, автомобилей, подвижного состава железных дорог), достигнутое в созданных рядом отраслей конструкциях увеличенной эффективности и проходимости, а также успешное применение импульсных процессов в теХ нологии формоизменения и упрочнения, были связаны с разработкой задач о распространении упругих и упруго-пластических волн, преимущественно в одномерной постановке. Применение метода характеристик и изыскание вычисляемых алгоритмов уравнений упруго-пластических деформаций позволили решить ряд задач расчета динамических усилий и деформаций при соударении деталей и при импульсных процессах формообразования, образующих зоны упрочнения на поверхности деталей. Большое практическое значение получили экспериментальные работы этого направления, позволившие измерить как протекание деформаций во времени, так и получение уравнений состояния, необходимых для определения действительных усилий. Полученные уравнения состояния показали существенное значение эффекта повышения сопротивления пластическим деформациям и их запаздывания в зависимости от скорости процесса.  [c.39]

Определение местных деформаций и напряжений в элементах конструкций и деталях машин с учетом истории нагружения может быть выполнено экспериментальными методами по данным измерений на моделях и натурных конструкциях (см. гл. 2—7, 9), аналитическими (см. гл. 2, 11) или численными методами с применением ЭВМ (см. гл. 8). В последних случаях определению напряженных и деформированных состояний должно предшествовать определение внешних усилий и температурных полей от тепловых эксплуатационных воздействий.  [c.253]

Специфичность деталей конического соединения призм со втулкой и воспринимаемых ими нагрузок исключила возможность проводить экспериментальные работы на общепринятых испытательных машинах. Поэтому опыты по определению прочности конического сопряжения призмы и втулки выполнялись на специальном, для этой цели изготовленном приспособлении (рис. 4), работающем по принципу рычага. Рисунок изображает момент выкручивания конуса с применением нагрузки на лезвия призмы при их смещении. В основном приспособление состоит из сварного каркаса 1, приваренных к нему двух швеллеров 2 и и проходящего сквозь каркас и швеллеры рычага 2-го рода 3. В процессе запрессовки или выпрессовки конуса конусная пара ставится на приварной к каркасу стул 4. Нажим рычага на конус производится через шарик 5. Усилие запрессовки измеряется контрольными гирями 6. Первоначальная коорди-  [c.187]

Расчет подобных конструкций без экспериментального исследования представляет значительные затруднения в связи с необходимостью учета особенностей работы составной конструкции (многократная статическая неопределимость, наличие сил трения, учет усилий в связях). При исследовании таких конструкций должны решаться следующие основные задачи определение изгибающих напряжений, контактных давлений, перемещений и упругого сжатия отдельных деталей, выявление влияния концентрации напряжений, кромочного эффекта контактной коррозии и сил трения.  [c.554]

ЛИЙ, определяемых при раскрытии статической неопределимости расчётом и действительным значением этих усилий, благодаря отклонениям расчётной схемы от фактической, отклонениям в величинах монтажных натягов, жёсткостей и т. д. в) разница в величине рассчитываемых и действительных напряжений благодаря несоответствию напряжений, даваемых формулами сопротивления материалов, фактическому их распределению, недостаточное соответствие данных о концентрации действительным очертаниям рассчитываемых деталей, а также вследствие влияния остаточных напряжений, напряжений от колебаний и ударов, обычно не учитываемых в расчёте. Эти отклонения в нагрузках, усилиях и напряжениях характеризуются сомножителем п. величина которого, ири использовании более достоверных методов определения усилий и напряжений (теоретических и экспериментальных), должна находиться в пределах 1,0 —1,5, при менее достоверных способах определения напряжённости, при повышенных требованиях к жёсткости величина п-1 можег достигать значений 2—3 и более.  [c.384]


Одним из основных вопросов технологии сварки является определение оптимального усилия сжатия свариваемых деталей. До настоящего времени эта величина определялась экспериментально методом технологической пробы, т. е. посредством механического разрушения сварных соединений и выяснения зависимости от  [c.54]

Вторым способом компенсации торцовых зазоров является дифференциальный поджим уплотняющих поверхностей, при котором пытаются учесть характер распределения давления в торцовом зазоре и теми или иными конструктивными приемами устранить тенденцию к перекосу уплотняющих поверхностей деталей. Некоторые конструктивные решения являются довольно сложными. Дифференциальный поджим плавающих втулок показан в конструкции насоса, изображенного на фиг. 90. Плавающие втулки 6 поджимаются к роторам ЗиЛ давлением жидкости, подводимой из камеры нагнетания по каналу 10. Площадь торцовой поверхности втулок, на которую воздействует жидкость, ограничивается величиной зазора а. Величина изолируемой поверхности втулок определяется экспериментальным путем. Недостаток этого способа уплотнения заключается в трудности определения требуемого усилия прижима втулок для разных давлений в связи с изменением закона распределения давления по периферии и торцам роторов. При возрастании рабочего давления зона повышенных давлений может появиться в пределах изолируемого участка торцов 140  [c.140]

Экспериментальные исследования по определению усилия правки были выполнены Б. В. Рябининым. Им установлено, что усилие правки следует определять в зависимости от точности угловых размеров деталей, полученных гибкой с последующей правкой. Исходя из этой предпосылки, усилие правки будет достаточным в том случае, когда дальнейшее его увеличение не приводит к повышению точности угловых размеров детали, т. е. к уменьшению упругих деформаций (пружинения).  [c.95]

Хорошо разработанные методы строительной механики для определения статических усилий, возникающих в упругих системах маншн, узлов и конструкций, потребовали во мнорих случаях экспериментального определения для машиностроения коэффициентов соответствующих уравнений, а также учета изменяемости условий совместности перемещений по мере изменения форм контактирующих поверхностей вследствие износа иди других явлений, нарастающих во времени. При относительно высокой жесткости таких деталей, как многоопорные коленчатые валы, зубья шестерен, хвостовики елочных турбинных замков, шлицевые и болтовые соединения, для раскрытия статической неопределимости были разработаны методы, основывающиеся на моделировании при определении в упругой и неупругой области коэффициентов уравнений, способа сил или перемещений, на учете изменяемости во времени условий сопряжения, а также применения средств вычислительной техники для улучшения распределения жесткостей и допусков на геометрические отклонения. Применительно к упругим системам металлоконструкций автомобилей, вагонов, сельскохозяйственных и строительных машин были разработаны методы расчета систем из стержней тонкостенного профиля, отражающие особенности их деформирования. Это способствовало повышению жесткости и прочности этих металлоконструкций в сочетании с уменьшением веса.  [c.38]

Метод эталонных, (нормированных) модулей, наиболее широко используемый в настояш ее время, пригоден для всех видов оборудования. Основан на сравнении экспериментально определенных и расчетных (в частности, полученных на математических моделях) численных значений параметров и показателей качества (мощности, КПД, усилий, крутящих моментов, давлений, ускорений, подачи, амплитуд вибраций и т. п.) с их паспортными данными и нормами технических условий. Преимуществом метода является возможность разностороннега использования полученной информации (для проверки деталей на прочность и износостойкость, прогнозирования их ресурса, определения затрат энергии и т. п). С помощью модулей кинематических и силовых параметров могут быть рассчитаны квалиметрические показатели, используемые для оценки качества механизмов и при диагностировании. Реализация метода эталонных модулей, основанная на применении предельных значений одного или нескольких модулей и метода ветвей, при постановке диагноза не требует сложной аппаратуры и программного обеспечения.  [c.13]

Современные методы расчета отражают влияние динамичности нагрузок, формы и жесткости деталей, типа напряженного состояния, пластичности, усталости, ползучести и других факторов на несущую способность, поддающихся расчетному или экспериментальному определению. Влияние факторов, не поддающихся таким определениям, должно быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплуатации и испытания машин. Н. С. Стрелецким [33] и А. Р. Ржанициным [28] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчетными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1П2П3, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции.  [c.536]

Экспериментальное определение деформаций, напряжений и усилий включает постановку задачи, выбор метода исследования и аппаратуры (принцип измерения, тип и характеристики аппаратуры), проведение измерений и анализ получаемых данных. Экспериментальное определение производится на механических моделях (физическое моделирование), деталях машин и конструкциях в лабораторных, стандовых и эксплуатационных условиях. Современные экспериментальные методы позволяют находить действительные, в том числе наибольшие, вели-  [c.542]


Содержание настоящего тома разделено на две части. В первой, посвящённой расчётам на прочность, жёсткость и колебания элементов машин и конструкций, приведены основные справочные данные по сопротивлению материалов и строительной механике для расчёта конструктивных элементов типа стержней, пластинок и оболочек в пределах и за пределами упругости, а также стержневых систем. Здесь же изложены особенности расчёта тонкостенных стержней и приведены важнейшие данные, необходимые кон-структору-машиностроителю для расчёта деталей и узлов машин на колебания. Последние три главы первой части посвящены вопросам расчёта на прочность и экспериментального определения напряжённости деталей в связи с влиянием формы и характера действующих на детали усилий. Там же приведены данные о влиянии на прочность концентрации напряжений, размеров деталей и технологии их обработки.  [c.1105]

При сложной конфигурации деталей чисто математический расчет становится приближенным в той или другой степени, так как в этом случае он обычно основывается на упрощающих предположениях, имеющих лишь некоторую степень вероятности. В этих случаях применяются экспериментальные методы определения усилий и напряжений, оптический метод, метод лакокрасочных покрытий, методы электротензометрирования, макетирования и др.  [c.181]

Экспериментальные данные по определению Р [5] подтверждают результаты расчетов. На усилие запрессовки при соединении полимерных деталей с металлически-  [c.58]

Выбор различных посадок для подвижных и неподвижных соединений можно производить на основании предварительных расчетов, экспериментальных исследований или ориентируясь на аналогичные соединения, условия работы которых хорошо известны. Расчеты, связанные с выбором подвижных посадок, например при сопряжении цапф с подшипниками скольжения, осуществляются обычно на основе гидродинамической теории трения и заключаются в установлении необходимого зазора для обеспечения жидкостного трения. В других случаях зазоры могут рассчитываться по условию компенсации отклонений формы и расположения поверхностей для обеспечения беспрепятственной сборки деталей. Возможны также расчёты по условиям обеспечения необходимой точности перемещений деталей или фиксации их взаимного расположения, расчеты зазоров для компенсации температурных деформаций деталей и т. п. Расчеты, связанные с выбором посадок в неподвижных соединениях, сводятся к определению прочности соединения, напряжений и деформаций сопрягаемых деталей, а также к определению усилий запрессовки и распрессовки. В результате тех или иных расчетов необходимо получить допустимые наибольшие и наименьшие значения расчетных зазоров [5rnaxi, [Sm, 1 или расчегных натягов (Л/ шЕкЬ ЛТшт .  [c.299]

Сложность обработки давлением тонкостенных деталей заключается в том, что прикладываемые к рабочему инструменту значительные усилия, необходимые для деформирования неровностей поверхности, могут приводить к дефромации самих деталей и искажению их формы. Обработка тонкостенных деталей из сплава ВТЫ типа колец, стаканов и крышек показала следующее. Изменения диаметрального размера и шероховатости поверхности хорошо согласуются с экспериментальными данными. Однако при обработке деталей с соотношением толщины стенки йс и диаметра заготовки Оз порядка 0,02—0,05 необходимо соблюдать определенные ограничения для получения приемлемых качества поверхности и точности формы.  [c.93]

Т. е. усилия сжатия увеличиваются пропорционально толщине деталей. Такая зависимо сть между F и 6 хорошо согласуется с имеющимися экспериментальными данными [3]. При этом получаем стабильное переходное сопротивление (до 100 мком в холодном состоянии), достаточное развитие получают процессы пластической деформации. Некоторые авторы [2] считают, что удельное давление при сварке сталей с ростом толщины должно несколько увеличиваться. Последнее связывается с увеличением жесткости каркаса из нерасплавленного металла. При соединении деталей из магниевых сплавов эта тенденция выражена менее определенно ввиду невысокой теплопрочности этих металлов. С ростом толщины происходит некоторое накопление тепловой энергии, что несколько повышает деформационную способность металла сварного соединения. Для практических расчетов режимов сварки магниевых сплавов может быть использовано соотношение F = (250-ь270)б кГ.  [c.168]

В [422] даны общие рекомендации по выбору значений коэффициентов еапаса прочности. При повышенной точности расчета с широким исполь-вованием экспериментальных данных по определению усилий, напряжений и характеристик прочности в случае достаточной однородности материала и качества технологических процессов принимают [п] = 1,3...1,5. Если объем экспериментальной информации о нагрузках и прочности недостаточен, результаты натурных усталостных испытаний ограничены, то при среднем уровне технологии производства следует принимать [п = 1,5.,.2,0. При малом объеме или отсутствии экспериментальной информации о нагрузках и прочности, невысоком уровне технологии производства, пониженной однородности материала (литье, сварные детали значительных размеров) можно принять [п] = 2...3. Для весьма ответственных деталей, разрушение которых может приводить к авариям и тяжелым последствиям, значения [п] увеличивают. Более подробно вопросы определения коэффициентов запаса прочности изложены в работах [73, 380, 381, 383, 384, 385, 557, 662,  [c.275]


Смотреть страницы где упоминается термин Детали Усилия — Экспериментальное определение : [c.482]    [c.482]    [c.144]   
Справочник машиностроителя Том 3 (1951) -- [ c.315 ]



ПОИСК



Деталь определение

Усилия Определение экспериментально

Усилия — Определение



© 2025 Mash-xxl.info Реклама на сайте