Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоское фокальные

Здесь первый член описывает вклад двух аберраций — так называемой наклонной сферической аберрации [821 и кривизны поля, второй член соответствует коме. Минимум зависимости 5 (а) на рис. 5.14, б соответствует равному вкладу обоих членов. Коэффициенты в (5.13) относятся к случаю плоской фокальной поверхности. Для оптимально искривленной фокальной поверхности, имеющей форму параболоида, у которого отклонение от плоскости на отрезке от точки фокусировки до оптической оси  [c.175]


При использовании плоской фокальной поверхности коэффициент в первом члене (5.17) удваивается. Отметим, что выражения (5.17) и (5.18) соответствуют оптимальному случаю равенства углов скольжения на первом и втором зеркалах вблизи плоскости сочленения (для луча, выходящего из осевой точки источника) 01 = 02 = 00 = (йо/4) (1 -f ММ).  [c.183]

Возможна также минимизация аберраций при условии получения плоской фокальной поверхности. На базе такой голографической вогнутой решетки может быть создан малогабаритный спектрограф с регистрацией спектра на фотопластинку.  [c.319]

Известный интерференционный опыт Юнга, имеющий большое историческое значение (см. 16), соответствует случаю дифракции на двух щелях. Рэлей использовал этот случай для построения простого интерференционного (или дифракционного) рефрактометра, в котором два интерферирующих луча получаются в результате дифракции плоской волны на двух щелях. Схема расположения Рэлея изображена на рис. 9.12. Ярко освещенная щель 5 служит источником света, расположенным в фокальной плоскости объектива 1, прикрытого экраном АВ с двумя щелями, за которым располагаются трубки рефрактометра и Дз- В фокальной плоскости  [c.193]

Если голограмму Фурье просветить плоской волной, то каждая элементарная решетка образует три плоские волны с порядками т = о, =п (см. 58). Можно сказать, следовательно, что каждая точка предмета порождает плоские волны (главное и дополнительное изображения), причем направление их распространения определяется координатой этой точки. Таким образом, в данном случае голографирование эквивалентно размещению предмета в фокальной плоскости некоторой оптической системы. Этот же вывод вытекает и из общих формул, полученных в предыдущем параграфе. Для  [c.255]

Пусть на объектив трубы или (фотоаппарата падает плоская волна от бесконечно удаленного источника света, например от звезды. Ди(фракция на краях круглой оправы, ограничивающей отверстие трубы, приведет к тому, что в (фокальной плоскости объектива получится не просто стигматическое изображение точки, а более сложное распределение освещенности центральный максимум, интенсивность которого быстро спадает, переходя в темное кольцо второй, более слабый кольцевой максимум и т. д. (см. 42, рис. 9.7, б). Радиус первого темного кольца стягивает угол ф (с вершиной в центре объектива). Величина этого угла определяется из условия  [c.346]

Принцип образования изображения в системе может быть рассмотрен как процесс двойной дифракции. Первая дифракция происходит на объекте 2, освещаемом плоской монохроматической волной, образуемой когерентным источником света /. Объект 2 расположен в передней фокальной плоскости объектива 3, который образует в своей задней фокальной плоскости 4 пространственный спектр объекта (т. е. осуществляет преобразование Фурье объекта). В плоскости голограммы 4, которая одновременно является передней фокальной плоскостью второго объектива 5, находится мультиплицирующий элемент, представляющий собой голограмму набора точечных источников, число и расположение которых соответствует желаемому числу и расположению размноженных изображений. В результате в плоскости голограммы 4 имеем произведение двух спектров Фурье объекта и набора точечных источников. Второй объектив 5 в свою очередь осуществляет преобразование Фурье объекта, находящегося в его фокальной плоскости. Как следствие. этого в плоскости изображения 6 получаем совокупность изображений исходного объекта, причем линейное увеличение системы 7 и размер изображений определяются соотношением фокусов объективов системы 7==/,//,. Очевидно, что размеры отдельных модулей могут быть большими (более 5—10 мм), они ограничиваются лишь полем изображения второго объектива 5. Это является большим преимуществом системы.  [c.63]


Па рис. 7.1 показана типичная схема теневого дефектоскопа с визуальным, изображением поля прошедшего излучения. Источник 1 УЗ-волн обычно достаточно большой, чтобы интерференционными явлениями в ближней зоне можно было пренебречь и считать с достаточной точностью поле излучения плоской однородной волной. С этой же целью его, наоборот, можно сделать малым, чтобы работать в дальней зоне, но в этом случае амплитуда поля суш,ественно снизится. УЗ-волны проходят через объект контроля 2. При наличии в объекте контроля дефекта однородность поля нарушается и позади дефекта образуется звуковая тень. Для повышения контрастности и четкости изображения прошедшие лучи обычно фокусируют ультразвуковой линзой 3. В фокальной плоскости линзы возникает акустический рельеф, т. е. определенное распределение интенсивности или амплитуды в плоскости поперечного сечения звукового пучка, соответствуюш,ее наблюдаемому дефекту. Чтобы сделать звуковой рельеф видимым, применяют различные устройства, называемые акустико-оптическими преоб-разователя.ми 4.  [c.392]

Автор доказывает теоремы о сложении скоростей и ускорений точки, теорему о конечном перемещении плоской фигуры в ее плоскости и т. п., хорошо известные студентам из курса кинематики с другой стороны, он говорит о циклических точках плоскости, о циркулярных кривых и их фокальных центрах, о полном четырехстороннике, о гармонических группах точек и т. п., хотя эти понятия совершенно незнакомы студентам втузов поэтому мы сочли полезным сделать в примечаниях некоторые ссылки на нашу монографию [208], где в систематической форме изложен весь геометрический материал, необходимый для понимания работ-, посвященных геометрическим методам решения задач синтеза плоских механизмов.  [c.6]

Метод фокального пятна состоит в том, что преобразование поля ближней зоны идеальной положительной линзой приводит к образованию в ее фокальной плоскости амплитудного распределения интенсивности излучения, совпадающего с распределением поля в дальней зоне. Плоский фронт волны преобразуется идеальной линзой в сферический, сходящийся в фокусе. Вблизи фокальной плоскости образуется пятно радиусом а. Расходимость определится из соотношения 0 = 2а//, где / — фокусное расстояние линзы. Пятно минимального радиуса находится не в фокальной плоскости. В этом методе рекомендуется использовать длиннофокусные линзы с большей апертурой. Таким образом, измерение расходимости этим методом сводится к точному измерению радиуса а фокального пятна. Существует несколько способов его определения.  [c.102]

Лучи, исходящие из светящегося перекрестия, направляются объективом II с помощью зеркала 5 и призмы 6 на поверхность плоского зеркала 15. Так как развернутое расстояние от светящегося перекрестия до объектива равно его фокусному расстоянию, то из объектива выходит параллельный пучок лучей. Отравившись от плоского зеркала 15, лучи собираются в фокальной плоскости объектива, где помещен оптический микрометр 7, 8 и 9, для определения смещения изображения светящегося перекрестия вследствие поворота отражающей плоскости (зеркала) впереди объектива. Линзы 10 составляют окуляр прибора. Лампочка 12 освещает через светофильтр 13 и зеркальце 14 секундную шкалу в поле зрения и включается только в момент отсчета.  [c.145]

Третья ветвь оптической системы предназначена для визуального наблюдения и фокусировки изображения исследуемой области модели на поверхности вогнутого зеркала. В эту ветвь входят плоское зеркало 13, объектив 14 и окуляр 15. Отражаясь от вогнутого и плоского зеркал, лучи попадают в объектив, который переносит изображение наблюдаемой области модели в фокальную плоскость окуляра.  [c.33]

На рис. 2.1, а показано сечение щели шириной а и длиной I в направлении, перпендикулярном плоскости рисунка. Щель равномерно освещена монохроматическим светом с длиной волны К, удовлетворяющим требованиям когерентности, сформулированным в разд. 1.2 и такой схемой опыта, где плоские волновые фронты нормально падают на щель. При этом дифракционная картина Фраунгофера, определяемая щелью, образуется в задней фокальной плоскости линзы. Предположим, что 1 а, тогда события в плоскостях, параллельных плоскости рисунка, могут считаться одинаковыми такая картина является одномерной дифракционной картиной. Ее детальный вид можно получить с помощью модели волновых цугов Гюйгенса.  [c.27]


Устройства оптической обработки выполняют все необходимые вычислительные операции (свертка функций, дифференцирование, интегрирование и т. д.) на основе двух базовых — комплексного умножения и преобразования Фурье. В основе комплексного умножения лежит модуляция световой волны, проходящей через объект в виде транспаранта с заданным амплитудным коэффициентом пропускания. (Напомним, что именно на основе представления об амплитудном коэффициенте пропускания в гл. 1 был развит волновой подход в теории ДОЭ.) Операцию преобразования Фурье выполняет оптический фурье-анализатор, состоящий в простейшем случае из транспаранта с входным изображением и линзы (объектива) с положительной оптической силой [24]. Если транспарант освещает плоская монохроматическая волна, то его фурье-об-раз (спектр пространственных частот) формируется в дальней зоне в результате дифракции света на структуре транспаранта. Линза переносит спектр из бесконечности в свою фокальную плоскость, где он представляется в виде комплексной амплитуды волнового поля.  [c.150]

ПЛОСКИХ ВОЛН, распространяющихся в несколько различных направлениях. Одна из них, распространяющаяся под углом 0 к оси, показана на рис. 7.5, б штриховыми линиями. Как мы видим, эта волна будет фокусироваться в фокальной плоскости линзы в точке Р, которая отстоит (при малых значениях угла 0) от оси пучка на расстояние  [c.460]

Голографические решетки свободны от сферической аберрации, поэтому могут иметь большую апертуру. При использовании тороидальных подложек такие решетки не имеют астигматизма в широкой области спектра и могут иметь плоское фокальное поле, что очень важно для регистрации спектров координаточув-ствительными фотоэлектрическими детекторами. Широкий набор голографических решеток с исправленными аберрациями для рентгеновской и крайней УФ-области спектра 3—170 нм изготовляется фирмой Жобен Ивоня [451. Среди них — решетки на тороидальных подложках о углом отклонения пучка 140—172°, плотностью штрихов от 450 до 3000 мм , имеющие разрешение % й к = 10 - -3-10 и значение астигматизма, на порядок меньшее по сравнению с обычными сферическими решетками.  [c.267]

В области к > 2,5 нм в качестве диспергирующих элементов кроме дифракционных решеток и пoльзyюt псевдокристаллы (см. гл. 8), а в последнее время — многослойные интерференционные зеркала (см. гл. 4). Однако спектрометры с решетками, особенно голографическими или нарезными с переменным шагом штрихов, имеют существенное преимущество перед ними в спектральном разрешении и размере одновременно наблюдаемого диапазона спектра. Разработаны стигматические схемы таких спектрометров, а также схемы с плоским фокальным полем. Рассмотрим некоторые из них, имеющие практическое значение.  [c.287]

Выбор [Л определит конкретные аберрационные характеристики прибора. Возможна также минимизация аббераций при условии получения плоской фокальной поверхности. На базе такой голографической вогнутой решетки могут быть созданы малогабаритные спектрографы и монохроматоры высокой светосилы.  [c.419]

Если в силу каких-либо причин волновая поверхность обладает различной кривизной в разных сечениях, то тогда и возникнет астигматизм. Известно, что два сечения, обладающие минимальной и максимальной кривизной, взаимно перпендикулярны. Это и объясняет появление фокальных линий аа и ЬЬ на рис. 6.59, заменивщих стигматический фокус. Для того чтобы астигматизм не возникал, нужно, чтобы при всех преобразованиях пучок света оставался гомоцентрическим. Этого добиться трудно, так как при любом преломлении (даже на идеально плоской границе) гомоцентричность пучка нарушается. Возникнет астигматизм наклонных пучков. Следовательно, неизбежен астигматизм и при использовании призмы, на преломляющую поверхность которой свет всегда падает наклонно.  [c.329]

Пусть объектом служит однолте )ная дифракционная решетка с постоянной d (рис. 6.7 )). Будем считать ее плоской, что приемлемо, гак как и микроскопе исс.]едуются тошсие препараты, а глубина резкости столь сильного объектива мала. Плоская волна проходит сквозь решетку, распространяясь вдоль оптической оси микроскопа перпендикулярно плоскости решетки. В главной фокальной плоскости объектива получается спектр —  [c.342]

К камерному объективу также предъявляются высокие требования. Он должен давать резкое (стигматичное) и достаточно плоское изображение спектра. Практически даже с применением сложных объективов часто не удается в достаточной степени выровнять фокальную поверхность.  [c.20]

Фотокамера, осветительная труба и источник света приболчены к стенкам трубы так, что имеют общую ось, перпендикул51рную оси струи при вертикальном расположении форсунки 1. Перемещение форсунки по высоте осуществляется приспособлением 2, а поворот ее в вертикальной плоскости на угол 0 от О до 56° вокруг оси, проходящей через устье сопла, осуществляется маховиком 3 с помощью червячной передачи 4. Топливо подается по линии 5. Свет от источника, представляющего собой плоскую ксеноновую трубку 6, проходит через тонкое отверстие и конденсаторную линзу 7, окошко 8, трубу 9, затвор 10, дополнительную трубу 11, затвор 12, объектив аппарата 13, решетку 14 и попадает на пленку 15. Объектив вставлен в коническую часть фотокамеры перед объективом укреплено окошко из пластмассы для защиты фотоаппарата от давления. Диаметр линзы объектива составляет 32 мм, а ее фокальное расстояние 89 мм. Решетка 14 состоит из проволоки диаметром 0,0127 мм, ее отпечаток на фотографии дает возможность подсчитывать капли.  [c.253]

Микрообъективы по степени исправления хроматич. аберрации разделяются на ахроматы, у к-рых исправлена хроматич. аберрация для двух длин волн и остаётся небольшая окраска изображения, и апохроматы, у к-рых хроматич. аберрация исправлена для трёх длин волн и к-рые дают бесцветное изображение объекта. Существуют также суперапохроматы — линзовые системы, ахроматиаованные одновременно в УФ-и видимой областях спектра (250—700 нм). Плапахро-маты и планапохроматы имеют плоское ноле зрения, что особенно важно для микрофотографии. Кроме того, микрообъективы различаются по длине тубуса, на к-рую они рассчитаны,— на тубусы 160 мм, 190 мм и бесконечность (объективы последнего типа применяются в М. совместно с дополнит, линзой, к-рая переносит изображение из бесконечности в фокальную плоскость окуляра) по среде между объективом и препаратом — на сухие и иммерсионные системы разл. типов водные, глицериновые, масляные и т. д. по методу наблюдения— на обычные и фазово-контрастные по типу препаратов — с покровным стеклом и без него и т. д. Разл. приспособления к М. позволяют улучшать условия наблюдения и расширять возможности исследования.  [c.143]


В сканирующей растровой М. а. сфокусированный УЗ-пучок перемещается по объекту, изображение к-рого воссоздаётся по точкам в виде растра. Фокусиров. волна, падая на образец, частично отражается от объекта, частично поглощается и рассеивается в нём, а частично проходит через него. Принимая ту или иную часть излучения, можно судить об акустич. свойствах образца в области, размеры к-рой определяются размерами фокального пятна. В акустич. микроскопе (рис. 2) пучок плоских У 3-волн, излучаемых пьезоэлектрич. преобразователем 1, фокусируется акустич. линзой 2, к-рая представляет собой сферич. углубление на границе раздела звуко-провода 3 и иммерсионной жидкости 4. Образец 5 помещается вблизи фекальной плоскости линзы и перемещается параллельно ей по двум осям с помощью механич. сканирующего устройства 6. УЗ-нзлучепие после взаимодействия с объектом соби-  [c.148]

О. с. бывают призменными и линзовыми. Помимо оборачивающего действия О. с. может изменять габариты оптич. системы, укорачивая её (призменная О. с.) или удлиняя (линзовая О. с.). Обычно линзовая О. с. (рис. 1) состоит из двух сложных линз 2 и 3 ж добавочной плоско-выпуклой линзы J, наз. коллективом, расположенной вблизи фокальной плоскости объектива, предшествующего О. с. Коллектив 1 формирует изображение входного зрачка этого объектива между линзами 2 ж 3, что позволяет свести к минимуму поперечные размеры О. с. Линзовая О. с. позволяет осуществлять скачкообразное или плавное (панкра-тическое) изменение масштаба изображения путём перемещения всей О. с. или её отд. частей вдоль оптич. оси. Однако применение линзовых О. с. вызывает неизбежное ухудшение качества изображения, связанное с наличием таких трудноустранимых аберраций, как кривизна изображения и вторичный спектр. Линзовые О. с. используются в перископах подводных лодок.  [c.382]

Б.А.Григорьев. Расчет двумерного нестационарного поля температур при импульсном лучистом нагреве плоских тел в фокальном пятне солнечных установок (при распределении облученности по закону Гаусса). Докл. Всес. конфер. по исп. солнечной энергии, ВНИИТ, 1969.  [c.702]

Эллиптическая пластинка, имеющая верх (г > 0) и низ (г<0), ограниченная фокальным эллипсом о, представляет одну из координатных поверхностей р = 1 семейства эллипсоидов р = onst в системе эллиптических координат р, [х, v [см. п. III. 11, в частности формулу (III. 11.16)]. Поэтому естественно ввести в рассмотрение потенциал простого слоя со (х, г ро) на поверхности эллипсоида Q (р = ро>1), определив эту непрерывную гармоническую функцию ее значением (и х,у,г рс) на Q. Можно для задачи о плоском штампе по (6.2.6) принять  [c.312]

Рассмотрим рис. 1.5, на котором изображена объектная маска с двумя очень малыми апертурными отверстиями В и С, однородно освещенными квазимонохроматическим светом от удаленного источника. Плоские волны поступают по нормали к маске, а сферические волновые фронты расходятся из В и С. Схема такая же, как и в опыте Юнга, за тем исключением, что теперь дополнительно у нас есть линза, которая создает изображение точечных отверстий в плоскости, расположенной, как показано на рисунке. Непосредственный интерес представляет, однако, задняя фокальная плоскость линзы. Рассмотрим любую точку Р, лежащую в направлении под углом 0 к оси линзы в ней складываются вместе и интерферируют только составляющие, распространяющиеся от В и С в направлении 0 (сравните с опьггом Юнга, где интерференция в точке Р на рис. 1.1 происходит между светом, распространяющимся от апертур в разных направлениях). Мы увидим, что конкретная дифракционная картина (определяемая ниже как фраун-гоферовская) в задней фокальной плоскости отображающей линзы является особенно важным промежуточным шагом в формировании изображения, выполняемом линзой. Это позволяет оценить конечную стадию формирования изображения и предоставляет единственную и особую по своей важности возможность для преобразования изображения. Указанное обстоятельство подробно обсуждается в гл. 5, но здесь мы исследуем некоторые свойства картины, сформированной в описанном выше примере. Прежде, однако, отметим, что для экспериментального получения таких дифракционных картин Фраунгофера необходимо обеспечить существование статистических фазовых соотношений, обусловленных когерентным освещением (см. замечания в предьщущем разделе о различиях между когерентным и некогерентным формированием изображения). До гл. 5, где вновь обсуждается эта разница, мы будем (если не указано особо) предполагать, что условия когерентности выполняются.  [c.20]

Схема оптического дифрактометра для демонстрации и использования принципов, описанных ранее, показана в упрощенном виде на рис. 5.5. Обычно используется гелий-неоновый лазер с расщирителем пучка для обеспечения освещенности с почти идеальной когерентностью (временной и пространственной) по всему плоскому волновому фронту в положении О, где расположены объектные маски. Дифракционная картина (преобразование Фурье), создаваемая маской в положении О, формируется в фокальной плоскости D объектива Lj, а изображение (двойное преобразование) от О формируется на плоскости I. На практике для получения дифракционных картин приемлемого размера L, должен быть длиннофокусной линзой или соответствующей эквивалентной системой (например, комбинация фотографии и телевидения). Вторая линза Lj (ее положение обозначено на рисунке пунктирной линией) нужна для формирования действительного изображения на приемлемом расстоянии от объектной маски.  [c.96]

Пример распознавание образов по корреляции энергетического спектра. На схеме, представленной на рис. 5.19, транспарант Tj освещается плоской волной квазимонохроматического света. Комплексная амплитуда последнего может быть обозначена а фурье-преобразование от нее в фокальной плоскости линзы Lj-соответственно F . Здесь для простоты снова используется одномерное представление. Рассеиватель в плоскости преобразования разрушает когерентность и создает некогерентное распределение интенсивности, в сущности подобное самосве-тящемуся , которое пропорционально величине Fx являющейся энергетическим спектром (ср. разд. 4.7.1).  [c.119]

Чтобы проекционный объектив, формирующий изображение в бесконечности, осуществлял преобразование Фурье, необходимо транспарант с исходной информацией, освещаемый плоской волной, установить со стороны параллельного хода лучей (бесконечного отрезка) в фокальной плоскости объектива, тогда в другой фокальной плоскости распределение амплитуды поля будет соответствовать преобразованию Фурье от распределения комплексного пропускания транспаранта без фазовых искажений [24]. Для дублета линза — асферика в этом случае направление хода лучей оказывается обратным по сравнению с рассмотренным в п. 4.2, причем транспарант необходимо установить в плоскости дифракционной асферики. Ясно, что высокого и независимого от дифракционной эффективности линзы объектива отношения сигнал/шум в спектре пространственных частот можно достигнуть лишь тогда, когда свет, дифрагированный в нерабочие порядки линзы, не попадает в рабочую зону фурье-плоскости указанного спектра. Это будет обеспечено, если сместить апертурную диафрагму и, следовательно, обрабатываемый транспарант относительно оси объектива,  [c.151]


Смотреть страницы где упоминается термин Плоское фокальные : [c.180]    [c.265]    [c.56]    [c.101]    [c.189]    [c.282]    [c.283]    [c.288]    [c.106]    [c.174]    [c.443]    [c.15]    [c.242]    [c.508]    [c.174]    [c.352]    [c.332]    [c.388]    [c.450]    [c.179]   
Оптика (1985) -- [ c.129 ]



ПОИСК



Фокальные



© 2025 Mash-xxl.info Реклама на сайте