Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность при переменных (циклических)

Строго говоря, классические методы расчета теории пластичности, которые применяются в данной работе, не учитывают ряда важных особенностей, свойственных знакопеременной деформации, и дают, по-видимому, лишь оценочный результат. Как показывают эксперименты, у большинства металлов после каждого циклического изменения пластических деформаций наблюдается изменение некоторых упруго-пластических характеристик, изменяется зависимость между напряжением и деформацией. Чтобы учесть эту особенность при решении ряда технологических задач обработки металлов давлением, необходим соответствующий аппарат. Вероятно, он может быть создан путем обобщения результатов, опубликованных в книге (В. В. М о с к в и т и н. Пластичность при переменных нагружениях. Изд-во Московского университета, 1965).  [c.56]


Возможность применения деформационно-кинетических критериев малоцикловой и длительной циклической прочности в условиях неизотермического нагружения должна быть экспериментально обоснована с учетом особенностей, сопровождающих процесс циклического нагружения при переменных температурах. Эти особенности прежде всего связаны с характером изменения во времени и с числом циклов нагружения располагаемой пластичности материала, а также односторонне накопленных и циклических необратимых деформаций.  [c.44]

Вместе с тем в реальных условиях работы элементов конструкции могут существовать более сложные условия изотермического и неизотермического малоциклового нагружения. Существенный интерес представляет экспериментальное исследование закономерностей деформирования при типах малоциклового нагружения, отличающихся от рассмотренных ранее режимов нагружения, близких к простому. Практический интерес представляют, например, малоцикловые испытания при наличии компоненты нагружения, неизменной во время циклических испытаний, либо проведение малоцикловых нагружений при переменных температурах. При этом важным представляется экспериментальное обоснование применимости деформационной теории пластичности с оценкой точности расчетов при ее использовании для указанных типов сложных малоцикловых режимов нагружений.  [c.106]

Характеристики прочности, пластичности и твердости определяют при постепенно возрастающих нагрузках, они служат для оценки статической прочности материала, Выносливость определяют при циклически меняющихся нагрузках, по ней судят о работоспособности материала при переменных напряжениях.  [c.17]

Второй раздел посвящен основным законам, теоремам и уравнениям циклической пластичности. Изложены упругопластические свойства материалов при циклическом нагружении и законы их изменения в процессе одного цикла нагружения и от цикла к циклу. Обобщены методики приложения законов циклической пластичности к расчету стержневых систем, цилиндров, оболочек, дисков и пластин, подвергаемых циклическим изменениям нагрузок. Рассмотрены предельное состояние при переменных нагружениях и приспособляемость элементов конструкций.  [c.12]

При рассмотрении механизма процесса резания без снятия стружки необходимо обратить внимание и на то, что вблизи поверхности среза образуется участок, в котором при резании имели место пластические деформации и в котором при холодной деформации имело место упрочнение. Наличие упрочненной зоны у поверхности среза может быть нежелательным, если при последующем деформировании периметр заготовки увеличивается (отбортовка), если наклепанные участки в условиях эксплуатации детали получают переменные "(циклические) нагрузки или если деталь работает в агрессивной среде. В первом случае вследствие снижения пластичности при упрочнении наклепанный участок при деформировании растяжением быстрее разрушается во втором случае вследствие значительных остаточных напряжений может уменьшиться усталостная прочность и снижается сопротивление коррозии, что приводит к разрушению детали. Размеры наклепанной зоны в разделительных операциях могут быть установлены экспериментально в результате исследования микроструктур (по вытянутости зерен), измерением твердости (которая увеличивается с упрочнением), по глубине стравливания (наклепанный металл стравливается интенсивнее) и размерам зерен  [c.55]


При сложном циклическом нагружении переменный вектор Да,, может отклоняться от прямолинейного направления. Если это отклонение не очень велико (т. е. преобладает переменная нагрузка одного вида), то для расчета размахов напряжений и деформаций в первом приближении также можно пользоваться изложенной выше теорией — подобно тому, как деформационную теорию пластичности с успехом применяют для расчетов процессов сложного нагружения при каком-либо преобладающем виде нагрузки (с.м. гл. 4).  [c.221]

Для изготовления конструктивных элементов турбомашин используют жаропрочные сплавы [22, 75, 80, 100]. Они являются перспективными и для элементов тепловой энергетики в связи с ростом давления, температур и мощностей энергетических установок. Для изучения влияния пластичности жаропрочных материалов на сопротивление неизотермическому малоцикловому разрушению была разработана программа испытаний в условиях переменных температур (рис. 2.4). В нее включены испытания на термическую усталость без выдержки и с выдержкой при максимальной температуре (рис. 2.4, а и б) изотермические при предельных температурах термоусталостного цикла (рис. 2.4, в) неизотермические (в диапазоне температур основного термоусталостного цикла) для контрастных сочетаний режимов нагружения и нагрева (жесткий режим) при синфазном (рис. 2.4, д) и противофазном (рис. 2.4, г) циклических нагревах и нагружениях.  [c.47]

Таким образом, температурно-временная зависимость длительной пластичности конструкционных материалов является весьма сложной. Это, с одной стороны, существенно сказывается на характеристиках малоцикловой прочности при циклически меняющихся температурах, а с другой стороны, требует соответствующего учета при прогнозировании малоцикловой долговечности для случая переменных температур в критериальных уравнениях, описывающих достижение предельного состояния материала по условиям разрушения.  [c.75]

Влияние концентрации напряжений на сопротивление усталости при повышенных температурах связано с упруго-пластическим перераспределением напряжений, чему способствует ослабление сопротивления пластическим деформациям -с ростом температуры. Используя циклические диаграммы деформирования для различного накопленного числа циклов, можно построить кривые усталости в истинных напряжениях и показать для сталей с выраженной циклической пластичностью, что эти кривые при растяжении-сжатии и переменном изгибе как  [c.224]

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сия нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.  [c.16]

В работе [143] поверхностное легирование использовали для повышения статической и циклической прочности промышленного поликристаллического молибдена марки МЧ (плоские образцы толпщной 1 мм). На образцы молибдена (состояние поставки) на установке ВЭУ-120 (мош,ность 5 Квт) методом электронно-лучевого напыления наносили слой рения или никеля. После напыления рения проводили диффузионный отжиг в вакууме при температуре 1400 °С в течение 10 ч. В этом случае был получен композиционный материал с приповерхностным слоем переменного состава Re-Mo глубиной 8-10 мкм. Никель напылялся на рекристаллизованные образцы, а после напыления образцы отжигались в вакууме (900 С, 10 ч). Глубина диффузионного слоя в этом случае составляла 4 мкм. На рис. 5.21 представлены кривые статического растяжения и усталости образцов из молибдена в исходном состоянии и после поверхностного легирования. Некоторое улучшение пластичности при статических испытаниях на растяжение и повышение уровня предела выносливости в случае покрытия никелем, по-видимому, связано с большей пластичностью никеля по сравнению с молибденом, что приводит к пластифицирующему эффекту. Диффундируя в объем металла и располагаясь преимущественно вдоль границ зерен, никель участвует в образовании межзеренных прослоек, являющихся раствором молибдена в никеле. Эти прослойки оказывают упрочняющее влияние на границы зерен молибдена.  [c.191]


Для расчета элементов конструкций, работающих в упругопластической области при переменных нагружениях и температуре, применяются законы и уравнения циклической пластичности, изложенные в монографиях В. В. Москвитина, Ю. Н,Шевченко, Г. С. Писаренко, Н. С. Можаровского, Е. А. Антипова, С. В. Се-ренсена, Р. М. Шнейдеров и ча, А. П. Гусенкова и др. Уравнения получены в предположении, что при данных нагрузке и температуре напряженное и деформированное состояния твердого тела не претерпевают изменений с течением времени. В действительности напряжения и деформации деформируемого тела при данных нагрузке и температуре с течением времени изменяются. Задачи с такими условиями решаются при помощи теории ползучести. Основные законы и уравнения, описывающие явления ползучести материала твердого деформируемого тела, приведены в монографиях и учебниках Ю. Н. Работнова, С. Т. Милейко, Н. X. Арутюняна, И. И. Гольденблатта, Н. Н, Малинина, И. А. Одинга и др.  [c.11]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]

Сопротивление малоцикловой прочности, как известно [1, 2, 41, коррелирует с характеристиками пластичности. Применительно к условиям неизотермического нагружения существенно также, что материал подвергается действию всего диапазона переменных температур в каждом цикле нагружения, а пластичность конструкционных материалов в диапазоне реальных температур цикла нагрева, как правило, довольно не постоянна [1,41, и для многих из них наблюдается провал пластичности , как это, например, следует из рис. 2, а для жаропрочного сплава ЭП-693Д. Следует отметить также, что располагаемая пластичность многих высоколегированных стареющих конструкционных сталей и сплавов связана с эффектом охрупчивания и в связи с этим определяется временем циклического деформирования и длительностью пребывания материала при высоких температурах.  [c.37]

В современных конструкциях сосудов высокого давления, энергетических установках и аппаратах широко применяются резьбовые соединения больших диаметров, работающие в условиях переменного теплового и механического воздействия. Такие условия внешнего нагружения приводят к упругопластическому циклическому деформированию с возможным выходом из строя при малом числе циклов нагружения. Из-за ограничений по компоновке увеличить размеры этих соединений не представляется возмонсным. Для изготовления элементов крепежа в энергетике и других отраслях техники применяются теплоустойчивые стали, обладающие высокими характеристиками сопротивления однократному нагружению и пониженными свойствами пластичности. Дальнейшее повышение механических свойств применяемых металлов не приводит к увеличению сопротивления циклическому разрушению резьбовых соединений из-за смены механизма разрушения усталостного на хрупкий). Повышения работоспособности резьбовых соединений можно достигнуть лишь совершенствованием конструкций и применением материалов, обладающих повышенной сопротивляемостью циклическому нагружению при наличии трещин  [c.387]

Прогресс в теории неупругого деформирования, отмечаемый в последние два-три десятилетия, в существенной мере связан с актуальностью проблемы малоциклового разрушения для многих теплонапряженных и высоконагруженных конструкций современной техники. Необходимость расчета полей напряжений и деформаций при изменяющихся нагрузках и температурах потребовала переоценки простейших классических теорий пластичности и ползучести с точки зрения возможности отражения ими множества деформационных эффектов, которые при однократном нагружении не проявляются или признаются малосущественными. Оказалось, что разработка теории неупругого деформирования, удовлетворяющей новым требованиям, связана с немалыми принципиальными трудностями значительные затруднения возникали также при реализации поцикловых расчетов кинетики деформирования в связи с исключительно большой их трудоемкостью. На определенном этапе это предопределило преимущества приближенного подхода к оценке несущей способности конструкций, опирающегося на представления и методы предельного упругопластического анализа. Развитие, которое получил этот подход за последние десятилетия [16, 20], обеспечило ему довольно высокую эффективность при решении прикладных задач. С другой стороны, полученные в рамках теории приспособляемости (и ее дальнейшего обобщения — теории стационарных циклических состояний) четкие представления о различных типах поведения конструкции способствовали более глубокому пониманию многих характерных особенностей повторно-переменного деформирования.  [c.7]

Анализ показал, что моделирование микронапряжений может быть осуш ествлено формализованно, по типу известной стержневой ( столбчатой ) схемы Мазинга [22]. Структурная модель упруговязкопластической среды, представляюш ая собой широкое обобш ение и развитие данной схемы (см. гл. А5), по мнению авторов, в наибольшей степени удовлетворяет требованиям, предъявляемым к математическим моделям для описания реологических процессов. К преимуш ествам этой модели относятся ее универсальность — в смысле описания процессов пластичности и ползучести при самых разнообразных программах повторно-переменного (в частности циклического) нагружения, включая не изотермическое и непропорциональное, циклы с выдержками и т. д. связь с классическими теориями пластичности и ползучести, по отношению к которым она может рассматриваться как обобш ение, и математическая непротиворечивость простота идентификации (две определяюш ие функции модели находят по данным базовых испытаний стандартного типа при монотонном пропор-  [c.12]



Смотреть страницы где упоминается термин Пластичность при переменных (циклических) : [c.55]    [c.20]    [c.6]    [c.189]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.0 ]



ПОИСК



Переменная циклическая

Пластичность циклическая

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте