Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрики нелинейные

Ключевые слова капля, заряд, диэлектрик, нелинейные колебания.  [c.104]

Нелинейным диэлектрикам — сегнетоэлектрикам наряду с электронной и ионной свойственна спонтанная (самопроизвольная) поляризация, относящаяся к числу релаксационных видов. Спонтанная поляризация возникает в определенном температурном интервале, ограниченном сегнетоэлектрическими точками Кюри, под влиянием внутренних процессов самопроизвольно. При этом структура элементарной ячейки кристалла становится несимметричной, приобретая электрический момент. В пределах  [c.544]


Как мы видим, для нелинейной системы изоклинами на фазовой плоскости являются кубические параболы с различными коэффициентами й . Исключение составляют только изоклина бесконечности к1=-оо), совпадающая с осью координат х ( / = 01, и нулевая изоклина (к1 = 0), совпадающая с осью координат у (л = 0). На рис. 1.12 показано построение фазовых траекторий методом изоклин для электрического колебательного контура с нелинейным диэлектриком.  [c.33]

Это свойство нелинейных систем используется в умножителях частоты, в которых за счет соответственно подобранной нелинейности системы при гармоническом (или близком к нему) воздействии возникают колебания значительной амплитуды с частотами, кратными частоте воздействия. Подобные умножители частоты с катушками индуктивности с ферромагнитными сердечниками, конденсаторами с сегнетоэлектрическими диэлектриками или другими нелинейными элементами позволяют производить энергетически эффективное умножение частоты в 3, 5 и более раз в одном элементе. Из нечетности функций, аппроксимирующих нелинейные характеристики соответствующих катушек и конденсаторов, следует, что в указанных устройствах эффективное умножение частоты возможно лишь в нечетное число раз.  [c.107]

Используемые в качестве электроизоляционных материалов диэлектрики называются пассивными диэлектриками. В настоящее время широко применяются так называемые активные диэлектрики, параметры которых можно регулировать изменяя напряженность электрического поля, температуру, механические напряжения и другие параметры воздействующих на них факторов. Например, конденсатор, диэлектрическим материалом в котором служит пьезоэлектрик, под действием приложенного переменного напряжения изменяет свои линейные размеры и становится генератором ультразвуковых колебаний. Емкость электрического конденсатора, выполненного из нелинейного диэлектрика—сегнетоэлектрика, изменяется в зависимости от напряженности электрического поля если такая емкость включена в колебательный L -контур, то изменяется и его частота настройки.  [c.133]

В сильных электрических полях подвижность ионов нелинейно увеличивается с ростом напряженности. Поэтому, как и в жидких диэлектриках, в твердых ток увеличивается нелинейно с ростом напряженности электрического поля [см. (5.8)].  [c.144]

Какие диэлектрики относят к линейным и нелинейным  [c.30]

При воздействии гармонической электромагнитной волны большой интенсивности дипольный момент отдельного атома при большом значении Е изменяется уже не по гармоническому закону, вследствие чего формула (62) оказывается неверной. В этом случае поляризуемость диэлектрика определяется нелинейным соотношением  [c.75]


Знание зависимости е и tg 5 от частоты электрического поля необходимо для расчета радиотехнических устройств, в которых диэлектрики используются для создания нелинейных элементов, входящих в различные схемы (усилители, схемы регулирования, стабилизаторы частоты, преобразователи электрических сигналов) и др. Для подавляющего большинства диэлектриков величины е и tg 5, характеризующие диэлектрические свойства среды, в настоящее время определены. Разработаны методы диэлектрических измерений, позволяющие определять е и tg 5 в постоянных и переменных электрических полях, а также устанавливать зависимость этих величин от внешних условий (температуры, давления и т.п.).  [c.148]

Самопроизвольная поляризация наблюдается только у одного класса диэлектриков — сегнетоэлектриков. При охлаждении сегнетоэлектрика ниже определенной температуры, которую называют точкой Кюри, самопроизвольно, без внешних воздействий, возникает поляризация. Объем сегнетоэлектрика разбивается на домены, в каждом из которых вещество сильно поляризовано. В отсутствие поля домены расположены беспорядочно, и суммарная поляризация Р равна нулю. При наложении поля поляризация увеличивается нелинейно благодаря переориентации доменов. При циклическом изменении поля от +Е т -Е возникает петля гистерезиса (рис. 18.23). Когда напряженность поля возрастает, поляризация Р достигает насыщения при этом е увеличивается до максимального значения и вновь уменьшается. По аналогии с ферромагнетиками напряженность поля Ес, при которой меняется направление поляризации, называется коэрцитивной силой. Когда Ес < 0,1 МВ/м, сегнетоэлектрик является мягким когда Ес > 1МВ/м — жестким. Известно около 500 сегнетоэлектриков. Они принадлежат к классу активных диэлектриков, которые используются для генерации и преобразования электрических сигналов. Между электрическими, механическими, тепловыми и другими свойствами сегнетоэлектриков существуют нелинейные зависимости. Значения свойств вблизи точки Кюри имеют максимумы или минимумы. В частности, максимальное значение е достигается около точки Кюри.  [c.601]

Отклик любого диэлектрика на световое воздействие становится нелинейным в сильном электромагнитном поле, и оптические волоконные световоды не составляют исключения. С теоретической точки зрения возникновение нелинейного отклика связано с ангармоническим движением связанных электронов при воздействии приложенного поля Е. В результате индуцированная поляризация Р электрических диполей уже не является линейной, а удовлетворяет более общему соотношению [70]  [c.23]

Рис. 1.7. Линейные и нелинейные отклики на электрическое воздействие на диэлектрики Рис. 1.7. Линейные и нелинейные отклики на электрическое воздействие на диэлектрики
НЕЛИНЕЙНАЯ ПРОВОДИМОСТЬ ДИЭЛЕКТРИКОВ В УСЛОВИЯХ ПОВЫШЕННОЙ ИНЖЕКЦИИ НОСИТЕЛЕЙ ЗАРЯДА  [c.46]

Таким образом, инжекция электронов и дырок с металлических электродов в диэлектрик приводит к сложным нелинейным зависимостям электронного тока 01 электрического поля. Исследования токов, ограниченных пространственным зарядом, позволяют получить важные данные о природе дефектов кристаллической структуры диэлектриков и полупроводников. В тонких пленках нелинейная проводимость, обусловленная инжекцией, возникает при низких напряжениях, что применяется в технических приборах современной электроники.  [c.51]

Электромагнитное поле ЭМП распределено в объеме с различными средами (магнитопровод, воздушные зазоры, электропроводящие материалы и диэлектрики и т. п.), которые имеют сложную геометрическую конфигурацию поверхностей раздела. Учитывая это, а также нелинейность свойств магнитной среды и трехмерность объема ЭМП, можно представить, что расчет электромагнитного поля с помощью (4.8) в полном объеме ЭМП практически невозможен даже при использовании наиболее мощных современных ЭВМ. В связи с этим обычно осуществляется декомпозиция электромагнитного поля на отдельные составляющие и достаточно простые участки. Так, например, в активном объеме ЭМП при определенном-удалении от торцов имеется значительная средняя область, в которой трехмерное поле можно расматривать как совокупность идентичных распределений плоскопараллельных полей, плоскость которых перпендикулярна оси вращения. Наоборот, в зоне лобовых частей ЭМП свести трехмерное поле к двухмерному не удается, но и здесь возможны определенные упрощения при учете симметрии относительно оси вращения.  [c.89]


Но тождество (2.3) выполняется (при произвольном значении t), если О) = a>i = шз. Этого и следовало ожидать, поскольку нет никаких физических причин для изменения частоты при отра-нсении или преломлении света на границе раздела двух диэлектриков. Следует иметь в виду, что при взаимодействии с веществом очень сильной электромагнитной волны очевидное соотношение м = oi = шз может не выполняться. Это одна из ключевых проблем нелинейной оптики, получившей существенное развитие за последнее время. Рассмотрение некоторых исходных положений этой науки см. в 4.7.  [c.73]

В качестве примера нелинейной консервативной колебательной системы с одной степенью свободы рассмотрим электрический колебательный контур без затухания с конденсатором, в котором нет линейной зависимости напряжения от заряда. Подобными нелинейными свойствами обладают конденсаторы, в которых в качестве диэлектрика используются материалы, имеющие сег-нетоэлектрические свойства, и емкости, возникающие в р п-переходах (например, в полупроводниковых диодах) при обратном напряжении смещения.  [c.29]

Наконец, в сильных полях возможно -увеличение кйнцентрации носителей заряда за счет инжекции электронов с металла электродов и ударной ионизации ускоренными электронами. Нелинейный рост плотности тока с ростом напряженности выражается формулой / = kE ехр (—р Е). где k н р — постоянные, характерные для данного жидкого диэлектрика.  [c.143]

Спонтанная поляризация — это поляризация диэлектрика, возникающая при отсутствии внешнего электрического поля. Поляризация нелинейно зависит от напряженности электрического поля и характеризуется явно выраженным, большим максимумом при некоторой определенной температуре. Характерна для диэлектриков кристаллических структур, имеющих области (домены) с легко поляризующимися и длительно сохраняющими поляризованность кристаллическими системами, находящимися в большой зависимости от температуры вплоть до точки Кюри, при которой отмечается наивысшее поляризованное состояние и соответствуютцая ему максимальная диэлектрическая проницаемость. При более высокой температуре происходит структурное изменение в доменах и диэлектрическая проницаемость резко сни-лшется, а спонтанная поляризация исчезает. Эта поляризация имеет замедленный, характер, при высоких частотах не происходит, имеет диэлектрический гистерезис и характерна для сегнетоэлектрнков (ти-танаты бария, кальция, стронция).  [c.9]

Большинство диэлектриков характеризуется линейной зависимостью электрического смещения от напряженности электрического поля, созданного в диэлектрике. Особую группу составляют ди-51лектрики, в которых с изменением напряженности поля смещение меняется нелинейно, обнаруживая насыщение при некотором значении напряженности поля. Такие диэлектрики называются сегне-тоэлектриками.  [c.17]

Для нелинейного диэлектрика—сегнетоэлектрика—кривая за-иисимости заряда от напряжения приобретает вид петли гистерезиса, характерной для магнитных материалов (см. рис. 1-10) и в этом случае площадь иетли пропорциональна потерям энергии за один период в единице объема диэлектрика.  [c.45]

В Институте проблем прочности (ИПП) АН УССР разработан простой датчик давления, в котором используется изменение емкости плоского конденсатора, образованного двумя проводящими поверхностями с диэлектрической пленкой между ними, при сжатии Б волне нагрузки. В отличие от предыдущих исследований с диэлектриками, процессы ударной поляризации подавляются наложением электростатического поля, которое создается приложением к электродам датчика начальной разности потенциалов, и величина сигнала определяется только изменением емкости датчика при сжатии. Малые размеры датчика, высокий уровень сигнала, простота и надежность дают возможность его широкого использования в экспериментальных исследованиях. Экспериментально установлена работоспособность датчика для регистрации давлений в диапазоне до 150Х кгс/см2. Нелинейная зависимость изменения емкости датчика от нагрузки не является существенным препятствием для его использования при наличии тарировочной кривой. Применение диэлектрических датчиков с тонкой пленкой диэлектрика обеспечивает высокую разрешающую способность датчика по времени.  [c.169]

Электронная а к у с т и ч. нелинейность. Рассмотренные выше эффекты относились к распространению достаточно слабого УЗ. С повышением интенсивности звуковой волны всё большую роль начинают играть нелинейные эффекты, искажающие её форму, ограничиваю1цие рост её интенсивности при усилении или уменьшающие её затухание. В проводящих средах, помимо обычного решёточного энгармонизма, существует специфич. механизм нелинейности, связанный с захватом электронов проводимости в минимумы потенциа.тьной энергни электрич. ноля, сопровождающего акусгнч. волну (т. н. электронная акустич. нелинейность). В полупроводниках такой механизм нелинейности становится существенным ири иптепсивностях УЗ, значительно меньших тек, при к-рых сказывается ангармонизм решётки, характерный для диэлектриков. Захват электронов электрич. полом волны приводит к разд. эффектам в зависимости от соотношения между длиной звуковой волны и длиной свободного пробега злектрона.  [c.58]

М, А. Миллер, Г. В. Пермитин. ВОЛНОВОЙ КОЛЛАПС — явление самопроизвольной концентрации (обычно с последующей диссипацией) волновой энергии в малой области пространства. Может иметь место при распространении разл. типов волн в средах с достаточно высоким уровнем нелинейности. Часто происходит взрывным образом (за конечное время). Примером В. к. является образование в результате эффекта самофокусировки- света точечных фокусов, сопровождающих распространение интенсивных лазерных импульсов в прозрачном диэлектрике, открытое в 1965, В 1972 теоретически предсказан коллапс ленг-мюровских волн в плазме, обнаруженный затем экспериментально. Впоследствии были теоретически изучены коллапсы волн разл. типов в плазме (эл.-магн.,, - геликонных), а также коллапс звуковых волн и др.  [c.313]


В кристаллах диэлектриков, не содержащих свободных носителей зарядов, затухание Г. определяется в оси. его нелинейным взаимодействием с тепловыми фо-иоиами. На сравнительно низких частотах действует т. н. механизм фононной вязкости (м е х а н и з м Ахиезера). Он заключается в том, что упругая волна нарушает равновесное распределение тепловых фононов и перераспределение энергии между разл. фононами приводит к необратимому процессу диссипации энергии. Этот механизм имеет релаксац. характер, а роль времеии релаксации т играет время жизни фоно-па. Механизм фоиопной вязкости даёт вклад в поглощение как продольных, так и поперечных волн. Он является доминирующим при комнатных темп-рах, при К-рых выполняется условие штс1 (где ш — круговая частота Г.).  [c.477]

ЛУЧЕВАЯ ПРбЧНОСТЬ — способность среды или элемента силовой оптики сопротивляться необратимому изменению оптич. параметров и сохранять свою целостность при воздействии мощного оптич. излучении (папр., излучения лазера). Л. п. при многократном воздействии часто наз. лучевой стойкостью. Л. п. определяет верх, значение предела работоспособности элемента силовой оптики. Понятие Л. п. возникло одновременно с появлением мощных твердотельных лазеров, фокусировка излучения к-рых в объём или на поверхность среды приводила к её оптическому пробою. Л. п. численно характеризуется порогом разрушения (порогом пробоя) q — плотностью потока оптич. излучения, начиная с к-рой в объёме вещества или на его поверхности наступают необратимые изменения в результате выделения энергии за счёт линейного (остаточного) или нелинейного поглощения светового потока, обусловленного много-фотонным поглощением, ударной ионизацией или возникновением тепловой неустойчивости. Первые два механизма реализуются в прозрачных средах, лишённых любого вида поглощающих неоднородностей, а также при микронных размерах фокальных пятен или предельно малых длительностях импульсов излучения. При этом Л. п. достигает очень больших значений 10 Вт/см . При значит, размерах облучаемой области оптич. пробой обусловлен тепловой неустойчивостью среды, содержащей линейно или нелинейно поглощающие неоднородности (ПН) субмикропных размеров. Рост поглощения в окружающей микронеоднородность матрице связан с её нагревом ПН. При этом в материалах с малой шириной запрещённой зоны увеличивается концентрация свободных электронов, а в широкозонных диэлектриках происходит тер-мич. разложение вещества. <7 11,  [c.615]

Электрострищыя является преобладающим механизмом Ф. я. в прозрачных диэлектриках при достаточно высоких частотах. С злектрострикционными Ф. я. связан такой важный для нелинейной оптики эффект, как вынужденное Мандельштама — Бриллюэна рассеяние, к-рое возникает при достаточно высокой интенсивности света и сопровождается генерацией интенсивной гиперзвуковой волны.  [c.342]

ЭЛЕКТРОСТРЙКЦИЯ—деформация диэлектрика, пропорциональная квадрату приложенного электрич. поля (или поляризации). Электрострикционная деформация не меняет знак при изменении направления поля на противоположное. При наличии обратного пьезоэлектрич. эффекта (линейной связи деформации и поля см. Пьеюэлек-трики) Э. выступает в качестве малой нелинейной добавки к нему. В отличие от пьезоэлектрич. эффекта, у Э. нет обратного эффекта, но есть термодина.мически сопряжённый эффект — изменение диэлектрической проницаемости пол действием механич. напряжения (аналог фотоупруго-сти), Коэф. Э. является тензором 4-го ранга, несимметричным по перестановке 1-й и 2-й пар индексов и симметричным по перестановке индексов внутри 1-й и 2-й пар. Тензор Э. характеризуется в общем случае (триклинная симметрия) 36 компонентами. Э. может иметь место в центросимметричных кристаллах и в изотропной среде. В сегнето-электриках с центросимметричной исходной (неполярной) фазой эффект Э. велик в области фазового перехода, а в сегнетоэлектрич. фазе пьезоэлектрич. эффект можно  [c.594]

Области, в которых поляризованные заряженные частицы образуют диполи одинаковой ориентации, называются доменами. Если на сегнетозлектрик начнет действовать внешнее электрическое поле, домены начнут постепенно ориентироваться в направлении действия поля. В первый момент, когда внешнее поле еще не в состоянии повлиять на переориентацию противоположно направленных доменов, изменение поляризации будет протекать линейно, как у обычного диэлектрика (на рис. 49 —по участку прямой ОА). При возрастании напряженности электрического поля начнут переориентироваться в положительном направлении домены, направленные в противоположную сторону. Возрастание поляризации будет протекать по нелинейному закону, все время увеличивая эффект поляризации (участок ЛВ).  [c.194]

Диэлектрики используются главным образом как электроизоляционные материалы. Пьезоэлектрики применяются для преобразования звуковых колебаний в электрические и наоборот пироэлектрики — для индикации и измерения интенсивности инфракрасного излучения сег-нетоэлектрики — как нелинейные элементы в радиоэлектронике. Из жидких диэлектриков наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т.д.).  [c.95]

Воздействие света на прозрачные тела. При не слишком высоких интенсивностях световой волны поглощение света, как и других электромагнитных волн, в прозрачнь1Х диэлектриках очень мало оно объясняется гистерезисными потерями в течение цикла поляризации. Термодинамическая природа такого поглощения аналогична природе поглощения акустических волн в (почти) упругом теле. Когда напряженность поля в световой волне становится сравнимой с напряженностью внутреннего поля в данном теле (а в некоторых случаях и еще раньше), вступают в игру разнообразные,микрофизические процессы, которые в зависимости от конкретных условий могут играть различную роль ). Дадим весьма краткое описание некоторых возникающих при этом нелинейных процессов с феноменологической точки зрения.  [c.515]

В оптическом эффекте Керра двулучепреломление, индуцированное мощным излучением накачки, используется для того, чтобы изменить состояние поляризащ1и слабого сигнала при прохождении через изотропный нелинейный диэлектрик [5, 6]. Данный эффект можно применять в оптических затворах с пикосекундными временами срабатывания [8]. В световодах его впервые наблюдали в 1973 г. [12] с тех пор этот эффект привлекает большое внимание [13-20]. Принцип действия керровского затвора показан на рис. 7.1. На входе в световод излучения накачки и сигнальное излучение поляризованы линейно угол между направлениями их поляризаций равен 45°. Скрещенный поляризатор на выходе световода блокирует прохождение сигнала в отсутствие накачки. Когда накачка включается, разница показателей преломления для параллельных и перпендикулярных поляризационных компонент сигнала (по отношению к направлению поляризации накачки) становится другой из-за двулучепреломления, вызванного излучением накачки. Дополнительная разность фаз для двух компонент на выходе из световода проявляется в виде изменения состояния поляризации сигнального излучения, и часть сигнала проходит через поляризатор. Коэффициент прохождения сигнала зависит от интенсивности излучения накачки, и им можно управлять, просто изменяя эту интенсивность. Поскольку сигнал на одной длине волны может быть промодулирован накачкой на другой длине волны, этот прибор называется также керровским модулятором, и его можно применять в системах оптической связи и в оптических переключателях.  [c.179]

Монография представляет первую в мировой литературе попытку аналитического рассмотрения современного состояния разработок н применений (включая перспективные) диэлектрических материалов в электронной технике. В ней описаны особые свойства диэлектриков линейные и нелинейные диэлектрические, пьезо-, пиро-, сегнетоэлектрические, сегнетоэластические, электро-, аку-СТО-, нелинейно-оптические, лазерно-генерационные. Рассмотрены корреляции между мерой выраженности конкретных свойств и обусловливающими их особенностями структуры. Приведены характеристики основных типов используемых и предложенных устройств, включая интегральные и полифункциональные. Предложена система критериев качества рассматриваемых материалов применительно к видам их применений. Подробно протабулированы характеристики используемых и вновь предлагаемых материалов, а также типовых ИЭТ и ИФЭ с функциональными элементами из диэлектрических материалов с особыми свойствами. Проведен анализ перспектив развития отдельных направлений, сформулированы прогнозные перечни новых материалов. Книга может быть использована как современное справочное руководство при выборе материала для решения ряда прикладных задач.  [c.2]


Электрическое воздействие на диэлектрик приводит к ряду обратимых и необратимых физических явлений — не только электрических, но также механических и тепловых (см. табл. 1.1). Из электрических откликов отметим в первую очередь поляризацию, вследствие которой диэлектрик приобретает удельный электрический момент, называемый таюке поляризованностью Р . В первом приближении поляризованность пропорциональна полю Р = = ео%птЕт, где 60 = 8,854-10 2 ф/м — электрическая постоянная %пт-—тензор диэлектрической восприимчивости. Явление поляризации относится к обратимым — после выключения поля в диэлектрике обычно восстанавливается неполяризованное состояние. В сильных электрических полях пропорциональность Р и Е нарушается (рис. 1.7а) вследствие диэлектрической нелинейности, которая может быть учтена зависимостью %пт = %пт(Ет)  [c.19]

Как при монополярной, так и при биполярной инжекции носители заряда оказываются неравновесными и нарушают электронейтральность кристалла (равновесные носители, например тепловые, генерируются парами и нейтральность не нарушают). Вследствие нарушения электронейтральности в диэлектрике образуется пространственный (объемный) заряд, который частично захватывается дефектами-ловушками. В условиях существования пространственного заряда зависимость плотности тока от напряженности поля становится нелинейной (закон Ома нарушается).  [c.47]

В сильных электрических полях проводимость диэлектриков повышается и зависимость а(Е) становится нелинейной. Однако, если величина электрического поля не превышает порогового значения, изменения электрических свойств диэлектриков остаются обратимыми. Напротив, если величина электрического поля превышает это пороговое значение, то в диэлектрике происходят необратимые изменения свойств — электрическое старение и пробой. Необходимо отметить, что электрофизическим параметром диэлектрика является только пробивная напряженность при электронном пробое. Величина пробивной напряженности при элвктротепловом и электрохимическом механизмах пробоя в значительной мере определяется случайными факторами (зависит от окружающей диэлектрик среды или от примесей) и не может служить точной характеристикой того или иного электроизоляционного вещества.  [c.56]

В технике СВЧ используются диэлектрические материалы различного типа полимеры, слоистые пластики, ситаллы, ерамика, монокристаллы. Диапазон технического применения этих материалов весьма широ,к. В настоящем параграфе, однако, рассматриваются только такие диэлектрики, которые существенно уменьшают габариты СВЧ-электронных схем, т. е. диэлектрики с высокой диэлектрической проницаемостью (е>30). Эффект миниатюризации основан на гом, что длина электромагнитной волны в диэлектрике сокращается в j/ е раз, при этом планарные размеры микросхемы СВЧ уменьшаются соответственио в Е раз. Диэлектрики с высокой проницаемостью применяются в технике СВЧ в качестве диэлектрических резонаторов, подложек микросхем, фильтровых конденсаторов, нелинейных и управляющих элементов и др. Очевидно, такие диэлектрики во много.м определяют развитие СВЧ-микроэлектроники [31].  [c.88]

Выявлены новые физические механизмы, например нелинейное взаимодействие ПАВ в пьезодиэлектриках со вторичными электронами, существенно превосходящее нелинейность в слоистой системе пьезоэлектрик — полупроводник. Использование этого же типа взаимодействия позволило осуществить визуализацию процесса свертки, открыв перспективу создания нового класса приборов на ПАВ с оптическим выходом. Показана также возможность низкопорогового параметрического возбуждения звука СВЧ-диапазона в непьезоэлектрических твердых телах, основанного на электрострикционной нелинейности некоторых диэлектриков, что создает условия для дальнейшей микроминиатюризации электронных устройств и дополнительно подчеркивает целесообразность расширения работ в области электрострикционных материалов, рассмотренных в 5.5.  [c.154]


Смотреть страницы где упоминается термин Диэлектрики нелинейные : [c.299]    [c.92]    [c.177]    [c.65]    [c.323]    [c.295]    [c.521]    [c.276]    [c.183]    [c.74]    [c.5]    [c.90]    [c.160]   
Справочник по электротехническим материалам Т1 (1986) -- [ c.24 ]



ПОИСК



Армстронг, Н. Бломберген, Ж- Дюкуэнг, Взаимодействие световых воли в нелинейном диэлектрике. (Перевод А. Г. Ершова)

Диэлектрик

Испытание нелинейных диэлектриков

Нелинейные диэлектрики и их применение

Нелинейные источники, зависящие от . В. Нелинейная ионная поляризация Соотношения между величинами, связанными с макроскопическими полями в нелинейных диэлектриках

Термодинамика диэлектриков нелинейных



© 2025 Mash-xxl.info Реклама на сайте