Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изображение некогерентное

Рис. 6.6. Сравнение экспериментальной [8] и теоретической [2] зависимостей дисперсии смещений изображения некогерентного источника от параметра ро- Рис. 6.6. Сравнение экспериментальной [8] и теоретической [2] зависимостей <a href="/info/362770">дисперсии смещений изображения</a> <a href="/info/362973">некогерентного источника</a> от параметра ро-

Обозначим теперь через А (у, г ) аппаратную функцию, т. е. распределение освещенности в изображении светящейся точки. Распределение освещенности в изображении некогерентного объекта О у, г) определяется равенством  [c.621]

Число независимых образцов сигнала, усредняемых при регистрации изображения (некогерентное интегрирование) определяется из соотношения  [c.42]

Для оценки разрешающей силы телескопа остановимся на условиях разрешения двух близких звезд Si и S2 Пусть угловое расстояние между ними равно йф и в фокальной плоскости объектива наблюдается наложение дифракционных изображений от этих двух некогерентных излучателей (рис. 6.64). Для харак-  [c.335]

Рис. 11.15. Восстановление главного (а) и дополнительного (б) изображений при просвечивании объемной голограммы некогерентным светом. Рис. 11.15. Восстановление главного (а) и дополнительного (б) изображений при просвечивании <a href="/info/14406">объемной голограммы</a> некогерентным светом.
Минимальное разрешаемое микроскопом расстояние между двумя самосветящимися (испускающими некогерентное излучение) точками М и N будет найдено из условия, что центры двух независимых дифракционных картин, получаемых в плоскости изображения ЕЕ, окажутся на расстоянии, удовлетворяющем условию Рэлея, т. е. е = М М равно радиусу первого темного дифракционного кольца, окружающего изображение М или Л . Соответствующие дифракционные картины получаются в результате фраунгоферовой дифракции на круглой апертурной диафрагме АА. Поэтому угловой радиус ф первого темного кольца определится из условия  [c.349]

Голограмма имеет громадную информационную емкость. В пределе для бинарной информации (т. е. для информации, принимающей только два значения, например О или 1) и при использовании гелий-неонового лазера с /- = 0,6328 мкм она составляет Л =1,8- 10 бит/см (бит— единица бинарной информации), т. е. на одной фотопластинке можно получить множество голограмм различных предметов путем некогерентного последовательного наложения волновых фронтов и затем раздельного восстановления изображений. Одна из возможностей такой записи заключена в использовании при каждой экспозиции опорных пучков, падающих под различными углами.  [c.26]

В книге также не рассмотрены вопросы цветной голографии, с помощью которой формируются объемные цветные изображения, поражающие своей реалистичностью, методы получения голограмм в некогерентном свете и устройства, использующие такие голограммы, и т. п.1, Подобные вопросы и примеры, по мнению авторов, мало что добавляют к пониманию возможностей голографии, хотя и представляют большой интерес для специалистов, связанных с этими областями.  [c.122]


Зависимость интенсивности в центре изображения щели и его ширины от ширины щели для когерентного и некогерентного освещения иллюстрируется кривыми 1—4 на рис. 6. Различиями в этой зависимости (кривые 3 и 4) объясняется небольшое ухудшение четкости изображения линий на спектрограммах при фокусировке источника света на щель прибора.  [c.21]

Некогерентная оптическая система линейна относительно интенсивности. Поэтому распределение интенсивности в плоскости изображения /из (л, у ) представляется взвешенной непрерьшной суммой некогерентных функций рассеяния Н х, у )  [c.50]

Следовательно, основными преимуществами когерентного или почти когерентного источника, дающего излучение в виде сферической или плоской волны ограниченного поперечного сечения, является то, что излучение может быть сконцентрировано с помощью линз и зеркал в изображение, яркость которого больше яркости первоначального источника излучение в виде почти плоской волны можно направить на удаленный объект с очень малыми дифракционными потерями, в то время как лишь малая часть излучения от некогерентного источника может быть преобразована в почти плоскую волну.  [c.503]

Её график представлен на рис. 2 (штриховая кривая). Ф-ция (12) выведена без учёта хроматической аберрации, в предположении освещения объекта когерентным пучком. Реальная частотно-контрастная характеристика, полученная с учётом хроматической аберрации и некогерентности освещающего объект пучка, представлена на рис. 2 сплошной линией. Это — затухающая при высоких пространственных частотах кривая, огибающие к-рой, изображенные штрих-пунктирной линией, с ростом R приближаются к оси абсцисс. Она получена для оптимальной дефокусировки Д /, при к-рой предельная частота Ло максимально сдвинута в сторону высоких частот при отсутствии глубоких провалов на промежуточных частотах. На рис. 2 видно, что структурные фурье-компоненты с пространств, частотами <Ло передаются на изображении с контрастом  [c.548]

Некогерентное формирование изображения описано, исходя из понятий свертки и передаточной функции, причем особое внимание уделяется свойствам линейности и инвариантности, которые присущи многим типам электрических цепей (нелинейные цепи в данной книге не затрагиваются). Процесс когерентного формирования изображения на основе двойного преобразования Фурье иллюстрируется его специфическим применением в рентгеновской кристаллографии.  [c.7]

В этой главе в общих чертах показаны главные положения фурье-анали-за при формировании оптического изображения и его обработке в условиях когерентного и некогерентного освещения. Они включают как одиночное преобразование Фурье, так и преобразование в сочетании со сверткой и корреляцией. Следует, однако, сразу же привлечь внимание к тому факту, что важность этих положений не ограничивается обработкой данных, имеющих оптическое происхождение. В настоящее время можно привести большое число примеров, когда методы оптической обработки используются для данных, по своей природе не являющихся оптическими. Основная причина кроется в том, что математические операции, которые применяются для большинства оптических систем, часто используются также в системах связи. Оптический аналог весьма привлекателен, поскольку ему свойственно преимущество двумерного представления и параллельной обработки данных. Этот способ во все увеличивающейся степени внедряется в практику в связи с разработкой электронно-оптических устройств сопряжения в сочетании с ЭВМ. Когда по каким-то причинам оптические методы не употребляются, ЭВМ может применяться изолированно в целях использования тех же фундаментальных принципов для цифрового изображения и обработки.  [c.84]

В первой модели делается акцент на общий характер дифракции (рассеяние) света от объекта, когда условия по крайней мере частично когерентны, и на способ сведения света для формирования изображения. Аспекты анализа Фурье, относящиеся к первой части этого вопроса, уже знакомы нам по гл. 3 и 4. В разд. 5.3 мы рассматриваем их снова на этот раз с учетом второго этапа формирования изображения. Эта модель первоначально была сформулирована (в основном качественно) в 1873 г. Э. Аббе [1], который занимался проблемами наблюдений периодических объектов под микроскопом. Как можно сказать, пользуясь современной терминологией, он выяснил, что при способах освещения, используемых обычно в оптической микроскопии, формирование изображения вовсе не является полностью некогерентным процессом, как иногда полагают в действительности в некоторых современных системах он может быть почти когерентным.  [c.85]


Вторая модель формирования изображения, которую мы рассматриваем в разд. 5.2, применима к условиям как когерентного, так и некогерентного освещения. И здесь Рэлей внес важный вклад [51], на этот раз под влиянием более ранних работ Эри и Гельмгольца. Модель представляет изображение как комбинацию картин Эри (или более сложных картин, если присутствуют аберрации), которые оптическая система должна создавать отдельно для света из каждой точки объекта. Если освещение некогерентно, то интенсивности картин Эри, определяемые всеми точками объекта, являются просто аддитивными. Если же оно когерентно, то присутствует интерференция и тогда изображение математически представляет собой комбинацию картин Эри с комплексными амплитудами, Рэлей рассматривал оба предельных случая. При пред-  [c.85]

ФОРМИРОВАНИЕ НЕКОГЕРЕНТНОГО ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ  [c.88]

Некогерентное оптическое изображение 91  [c.91]

Это краткое замечание имеет целью дать лишь самое поверхностное представление о типах обработки, которые возможны с применением некогерентных систем, основанных на геометрии изображения и им подобных. Они включают в себя пространственные и временные методы сканирования, многоканальную обработку и т.д. и проектируются на основе широкого диапазона устройств (светодиодов, матриц ПЗС и т.д.).  [c.121]

Вторая проблема, возникаюш,ая при когерентном освещении,— изменение условий формирования изображения по сравнению с некогерентным случаем (имеется в виду изображение протяженного предмета) [30]. Хорошо известно, что при когерентном освещении происходит осцилляция интенсивности на  [c.190]

Пространственная разрешающая способность радиолокационной аппаратуры ДЗЗ (10—100 м для РСА и 1—2 км для некогерентных РЛС БО) сопоставима с разрешением оптических систем. Информативность радиолокационных изображений Земли зависит от энергетического потенциала и разрешающей способности РЛС, от полноты измерения поляризационных характеристик рассеяния наблюдаемых геофизических объектов, а также от структуры зондируемой поверхности и ее электрофизических характеристик. В то же время, качество радиолокационной съемки не зависит от условий освещенности поверхности Земли и наличия облачного покрова, что выгодно отличает эти системы от средств дистанционного зондирования в видимом диапазоне спектра. Кроме того, с использованием РЛС БО могут быть получены изображения земной поверхности, скрытой растительным покровом, а также определены диэлектрические свойства поверхностного слоя.  [c.128]

В случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы передается активной среде. На рис. 3.1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях активная среда имеет вид цилиндрического стержня, как это обычно встречается на практике. Его диаметр может быть от нескольких миллиметров до нескольких сантиметров, а длина — от нескольких сантиметров до нескольких десятков сантиметров. Лазер, очевидно, может работать в импульсном или в непрерывном режиме, в зависимости от того, является ли лампа накачки импульсной (лампа-вспышка) или непрерывной. Изображенная  [c.110]

От данной некогерентной лампы S можно получить пространственно-когерентную волну, а именно существенно снизить ее расходимость, если использовать устройство, изображенное на рис. 7.9. Свет от лампы S фокусируется на небольшой диафрагме диаметром d, расположенной в фокальной плоскости линзы L. Свет, прошедший через эту диафрагму, будет заполнять большой конус углов (сплошные линии на рис. 7.9), соответствую-ш,ий фокусирующему конусу линзы L. Однако пучок, образующийся в результате дифракции на этой диафрагме, имеет значительно меньшую расходимость 0 = l,22 v/d и будет таким образом занимать область, которая на рис. 7.9 заштрихована.  [c.465]

Шум, характерный для восстановленных с голограмм изображений, может быть также частично ослаблен некогерентным накоплением, т. е. усреднением интенсивности по нескольким изображениям, восстановленным с разных частей голограммы (рис. 8.3).  [c.168]

Как отмечалось в разд. 6.1 и 6.2, большие возможности представляет использование примесных нелинейных молекулярных кристаллов, позволяющих комбинировать свойства различных молекул [268], в частности менять степень резонансности нелинейных оптических эффектов. Так, например, вводя в нелинейные молекулярные кристаллы люминесцентные примеси, можно получать примесные кристаллы, в которых примесь люминесцирует при поглощении преобразованного сигнала. В этих кристаллах сложение частот в режиме векторного синхронизма приведет к появлению некогерентного излучения из любой заданной точки кристалла. При ис1Толг-" Г1чянии развертки в таком кристалле можно получить объемное изображение. Некогерентное излучение в данном случае необходимо для устранения мерцания изображения [269], возникающего при визуальном наблюдении когерентного излучения.  [c.183]

Чаще всего встречаются некогерентные оптические объекты, различные элементы которых излучают некоге-рентные колебания, независимые одни от других. Прежде всего к этой группе должны быть отнесены все светящиеся сами по себе объекты (звезды, Солнце, различные земные источники и т. д.). К ней относятся также объекты больших размеров, даже если они сами освещены вспомогательным источником (планеты и туманности, удаленные пейзажи и т. д.), поскольку большие расстояния между различными элементами объекта исключают возможность когерентности между колебаниями, исходящими из этих элементов. Различные монохроматические излучения, составляющие спектр источника, также некогерентны между. собой. С этим случаем изображений некогерентных объектов мы встречаемся в спектральных приборах. Воз-  [c.120]

Здесь мы рассматривали вопрос о формировании изображения некогерентного предмета. Если предмет является когерентным или частично когерентным, то, используя аналогичную методику, можно установить связь между функцией взаимной когерентности изображения и функцией взаимной когерентности предмета. Но в этом случае [307, 308] условие изопланатичности выполняется только для предметов, расположенных в пределах некоторой малой области плоскости предмета. Тогда говорят, что объект находится в изопланатической области.  [c.207]


Все астрономические объекты некогорснтны. Рассмотрим, как образуется в фокальной плоскости изображение некогерентного протяженного объекта. Напомним, что интепсииности излучений, приходящих в одну точку от двух или нескольких некогерентных источников Света, просто складываются. Оптическую систему телескопа будем по-прежнему считать идеальной. Обозначим интенсивность объекта (в плоскости (.г, у) (рис, 3.7) через о х, у),  [c.58]

Образование изображения некогерентно излучающего одномерного объекта для оптической системы, обладающей свойствами линейности и изопланатизма, без учета геометрического и фотометрического масштабов иллюстрирует рис. 199, где (х) характеризует распределение яркости на предмете. Каждому линейному элементу —Вд объекта соответствует некоторая функция рассеяния А ( ) объектива, которая является, по сути, математической моделью оптической системы, она отображает действие аберраций, дифракции и рассеяния света. Иногда ее называют аппаратной функцией. Параметр I отсчитывается от точки изображения, в которой определяется освещенность.  [c.247]

Указанное свойство формирования изображения некогерентной оптической системой использовалось в экспериментах по визуаль-. Ной оценке качества суммарного изображения. На рис. 2 2 представлена маска из 12 радиальных лучей, которая помещалась во входной зрачок объектива Это соответствовало 12 проекциям.  [c.63]

Уточним постановку задачи об освещении объекта в микроскопе, воспользовавшись введенными ранее понятиями (см. 6.5). Объектив Oj (рис. G.68) служит для освещения объекта, который находится в плоскости изображения круглого некогерентного однородного излучаге.чя S. Исс.иедуем степень когерентности колебаний в двух точках Pj и Рз объекта, рассматриваемого с помощью объектива Ог-  [c.339]

Пространственная когерентность играет важную роль в образовании изображения в оптических системах (приборах). Вследствие таутохронизма оптических систем (см. 20) световые колебания в изображениях различных точек соответствуют одновременным колебаниям в источнике света, т. е. в изображаемом предмете. Вместе с тем, в результате дифракционных явлений и аберраций в каждую точку плоскости изображения приходят волны, испущенные разными точками предмета. Если предмет самосветящийся, то колебания в разных его точках некогерентны и в изображении можно складывать интенсивности от разных точек предмета, приходящие в данную точку плоскости изображения. Если же предмет несамо-светящийся, то разные его точки, вообще говоря, частично когерентны и складывать интенсивности нельзя. Действительно, неса-мосветящиеся предметы наблюдаются в результате рассеяния волн, падающих на предмет от постороннего источника света. Если им служит точечный источник света, то световые колебания во всех точках освещаемого предмета находятся в строго определенных фазовых соотношениях, т. е. полностью когерентны, и в изображении следует складывать не интенсивности, а амплитуды колебаний, приходящих от разных точек предмета в данную точку плоскости изображений.  [c.105]

Наибольщее значение имеет случай, когда прямоугольное отверстие имеет незначительную щирину и бесконечную длину, т. е. является щелью. Практически, конечно, достаточно, чтобы ее длина была значительно больше ширины. Так, при ширине в 0,01—0,02 мм длина щели в несколько миллиметров может считаться бесконечной. В этом случае изображение точки растянется в полоску с максимумами и минимумами в направлении, перпендикулярном к щели, ибо свет дифрагирует вправо и влево от щели. При повороте щели около оси трубы вся картина также повернется. Если в качестве источника взять светящуюся нить, параллельную щели, то различные точки нити будут некогерентными между собой источниками и общая картина будет простым наложением картин от точечных источников. Мы будем наблюдать изображение нити, растянутое в направлении, перпендикулярном к направлению щели, т. е. опять-таки можем ограничиться рассмотрением картины в одном измерении.  [c.174]

Немногочисленные известные алгоритмы анализа сцен ввиду своей эвристичности далеко не всегда приводят к успеху даже в очень упрощенных и стилизованных условиях распознавания [4, 26, 44, 71 ]. Значительный интерес для практики представляют метод и системы инвариантного распознавания изображений, использующие в качестве видеодатчиков средства когерентной и некогерентной оптики [44, 116]. Однако и этому методу присущи определенные ограничения и недостатки. К ним относятся требование группового характера преобразований объектов на изображении сцены (что на практике выполняется далеко не всегда) и сложность выделения отдельных объектов путем вычисления их инвариантов. Имеются также хорошо зарекомендовавшие себя эвристические подходы к выделению отдельных объектов на сложной сцене без каких-либо попыток к их распознаванию. Так, в работе [44] описана программа для ЭВМ, позволяющая выделять отдельные объекты на контурном изображении сцены путем предварительной разметки линий и выявления среди них граничных линий на основе анализа типа узлов. В работе [133] описаны алгоритмы лингвистического анализа сложных (главным образом, контурных) изображений.  [c.255]

Пространственно-временные модуляторы света обладают высокой светочувствительностью, с ними возможны быстрые запись и стирание, высокая цикличность, они используются для ввода оптич. некогерентных изображений в информац.-вычислит. системы, Б оптич. спецпроцессорах для обнаружения, опознавания образов и слежения, для анализа и преобразования изображений.  [c.432]

Рассмотрим рис. 1.5, на котором изображена объектная маска с двумя очень малыми апертурными отверстиями В и С, однородно освещенными квазимонохроматическим светом от удаленного источника. Плоские волны поступают по нормали к маске, а сферические волновые фронты расходятся из В и С. Схема такая же, как и в опыте Юнга, за тем исключением, что теперь дополнительно у нас есть линза, которая создает изображение точечных отверстий в плоскости, расположенной, как показано на рисунке. Непосредственный интерес представляет, однако, задняя фокальная плоскость линзы. Рассмотрим любую точку Р, лежащую в направлении под углом 0 к оси линзы в ней складываются вместе и интерферируют только составляющие, распространяющиеся от В и С в направлении 0 (сравните с опьггом Юнга, где интерференция в точке Р на рис. 1.1 происходит между светом, распространяющимся от апертур в разных направлениях). Мы увидим, что конкретная дифракционная картина (определяемая ниже как фраун-гоферовская) в задней фокальной плоскости отображающей линзы является особенно важным промежуточным шагом в формировании изображения, выполняемом линзой. Это позволяет оценить конечную стадию формирования изображения и предоставляет единственную и особую по своей важности возможность для преобразования изображения. Указанное обстоятельство подробно обсуждается в гл. 5, но здесь мы исследуем некоторые свойства картины, сформированной в описанном выше примере. Прежде, однако, отметим, что для экспериментального получения таких дифракционных картин Фраунгофера необходимо обеспечить существование статистических фазовых соотношений, обусловленных когерентным освещением (см. замечания в предьщущем разделе о различиях между когерентным и некогерентным формированием изображения). До гл. 5, где вновь обсуждается эта разница, мы будем (если не указано особо) предполагать, что условия когерентности выполняются.  [c.20]

Уравнение (2,06) показьшает зависимость диаметра центрального диска диска Эри) от диаметра апертуры и длины волны света. Размер этого диска по существу и определяет предельное разрешение телескопа. Рассмотрим изображение двух звезд с малым угловым расстоянием 0 (рис. 2.6). Поскольку они являются некогерентными по отношению друг к другу источниками, изображение состоит из двух картин интенсивности Эри. Поэтому возможность разрешения двух звезд зависит от размера дисков Эри и расстояния, на котором они перекрываются. Общепринятое граничное условие, критерий Рэлея, представляет собой расстояние, показанное на рис. 2.4,6 и 2.5, в. Согласно этому критерию, две картины разрешаются, если центр диска Эри одной из них налагается на темное кольцо другой. Это обеспечивает провал на 20% в суммарной кривой интенсивности между пиками (которые предполагаются нами одинаковыми по интенсивности). Величина этого провала, хотя и выбрана весьма произвольной, тем не менее является во многих случаях удобным критерием разрешения.  [c.33]


Описание в предьщущем разделе процесса формирования изображения как свертки обычно можно применять для практического использования в телескопах, камерах и т.д. в виде свертки интенсивностей. Для большинства фотографических, телевизионных и других систем было определено хорошее согласие между экспериментальными измерениями и расчетами, основанными на предположении, что освещенность при нормальных условиях, по существу, носит некогерентный характер (Барнс, 1971). К счастью, в этом есть много преимуществ, включая удобство использования телевизионных кадров, дисплеев на светодиодах и др. в качестве входных устройств систем обработки.  [c.88]

В настоящее время объино используются другие схемы для создания голограмм непрозрачных и прозрачных объектов, для трехмерного цветного изображения и для различных применений в СВЧ-технике, акустике, некогерентной фотографии , неразрушающих испытаниях, исследованиях движения, хранения информации и т.д. Их описание можно найти в большинстве современных учебников по физике. Многие из полезных свойств голограмм не связаны, однако, с этими усовершенствованиями в технике построения изображения, так что описывать их  [c.108]

Яркость лазерного излучения на несколько порядков величины больше, чем яркость наиболее мощных некогерентных источников. Это обусловлено чрезвычайно высокой направленностью лазерного пучка. Сравним, например, одномодовый Не—Ме-лазер, длина волны излучения которого Х=0,63 мкм, а выходная мощность равна I мВт, с наиболее ярким источником света. Таким источником может быть ртутная лампа с высоким давлением паров ртути (лампа фирмы РЕК Labs типа 107/109), имеющая выходную мощность 100 Вт и яркость iB 95 Вт/(см -ср) для наиболее интенсивной излучаемой ею зеленой линии (X = 546 нм, АХ = 10 нм). Чтобы получить дифракционно-ограниченный пучок света, можно воспользоваться схемой, показанной на рис. 7.9. Телесный угол света, излучаемого точечным отверстием и собираемого линзой L, равен Й = = я )2/4р, а площадь излучающей поверхности А=псР/4. Поскольку яркость изображения лампы в плоскости диафрагмы не может быть больше яркости самой лампы, выходная мощность пучка равна по крайней мере  [c.471]


Смотреть страницы где упоминается термин Изображение некогерентное : [c.212]    [c.216]    [c.252]    [c.199]    [c.182]    [c.217]    [c.471]    [c.216]    [c.255]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.296 ]

Основы оптики Изд.2 (1973) -- [ c.443 , c.449 ]



ПОИСК



Влияние малых аберраций на качество изображения линии (некогерентное освещение)

Влияние малых аберраций на контраст изображения периодического объекта (некогерентное освещение)

Восстановление изображения некогерентном свете

Изображение некогерентное освещение

Изображение при когерентном и некогерентном освещении

Изображение протяженного источника при некогерентном освещении

Некогерентность

Образование изображения при некогерентном освещении

Получение изображения с помощью некогерентных воли

Получение суммарного изображения в некогерентной оптической системе

Различение пространственно некогерентных и пространственно когерентных световых полей по зарегистрированному оптическому изображению

Распределение освещенности в изображении щели при когерентном и некогерентном освещении

Формирование некогерентного оптического изображения



© 2025 Mash-xxl.info Реклама на сайте