Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуляция добротности усиления

Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]


Быстрое изменение добротности резонатора, или, как говорят, модуляцию добротности, можно осуществить различными методами. Одним из наиболее распространенных и удобных методов является применение насыщающегося фильтра. Насыщающийся фильтр представляет собой кювету с раствором красителя, который способен поглощать излучение лазера. В обычном состоянии фильтр имеет малый коэффициент пропускания - 10—15% и, будучи помещен в резонатор, сильно ухудшает его добротность. Под действием достаточно мощного излучения значительная часть молекул красителя может перейти в возбужденное состояние, вследствие чего коэффициент поглощения красителя уменьшается. Это явление — насыщение поглощения и просветление среды — имеет ту же природу, что и явление насыщения усиления (см. стр. 289).  [c.298]

Метод модуляции добротности [22] позволяет получать лазерную генерацию в виде коротких импульсов (длительностью от нескольких наносекунд до нескольких десятков наносекунд) с высокой пиковой мощностью (от нескольких мегаватт до нескольких десятков мегаватт). Основная идея метода состоит в следующем. Предположим, что в резонатор лазера помещен затвор. Если затвор закрыт, то генерация возникнуть не может и инверсия населенностей может достичь значения, которое намного превышает пороговое, имеющее место в отсутствие затвора. Если теперь резко открыть затвор, то усиление в лазере существенно превысит потери и накопленная энергия выделится в виде короткого и интенсивного светового импульса. Поскольку при этом происходит переключение добротности резонатора от низкого к высокому значению, то данный метод называется модуляцией добротности.  [c.284]

В соответствии с уравнением (5.186) мы будем иметь <7 = 0 и световой импульс будет иметь максимальную мощность. Это произойдет в момент времени t = tp па рисунке. При t > tp в лазере вместо усиления мы будем иметь потери, и, как следствие, мощность импульса уменьшится до нуля. В это же время инверсия населенностей достигнет окончательной величины N . Заметим, что передний фронт импульса оказывается короче его заднего фронта. Кроме того, отметим, что на рис. 5.26 временной масштаб при > О сильно отличается от масштаба при t <0. Например, в Nd YAG- лазере с модуляцией добротности.  [c.285]

Модуляция усиления, как и модуляция добротности, является методом, позволяющим генерировать лазерные импульсы короткой длительности (обычно от нескольких десятков до нескольких сотен наносекунд) и высокой пиковой мощности. Однако в отличие от модуляции добротности, при которой потери резко переключаются до низкого уровня, при модуляции усиления резко переключается усиление до высокого уровня. Модуляция усиления осуществляется с помощью столь короткого импульса накачки, что инверсия населенностей, а следовательно, и усиление начинают заметно превышать пороговые значения  [c.303]


В этом разделе мы рассмотрим работу лазерного усилителя с помощью скоростных уравнений. Допустим, что плоская волна постоянной интенсивности / падает (в точке z = 0) на лазерный усилитель длиной I вдоль оси z. Ограничимся рассмотрением случая, когда падающее излучение имеет вид импульса длительностью Тр, причем т, < < (т, Wp ), где ti — время жизни нижнего, а т — время жизни верхнего уровня активной среды и Wp — скорость накачки усилителя. Это, по-видимому, наиболее подходящий набор условий, необходимых для лазерного усиления. Он применяется, например, когда нужно усилить импульс излучения Nd YAG-лазера в режиме модуляции добротности. Поэтому мы не будем здесь рассматривать случай непрерывного режима усиления (стационарного усиления), а читателю советуем обратиться к соответствующей литературе [7,8].  [c.485]

Чтобы не слишком углубляться в теорию лазеров, будем считать, что модуляция добротности резонатора отсутствует, а накачка постоянна во времени и распределена равномерно по объему среды. Ограничимся наиболее важным случаем однородного уширения линии рабочего перехода, когда пространственная конкуренция способна существенно повлиять на ширину спектра генерации. Это позволяет отвлечься от особенностей среды и применить для коэффициента усиления ку (см ) весьма простую формулу  [c.178]

Для усиления энергии излучения после лазерного генератора помещают либо одну, либо две ступени усилителя (рис. 97). При модуляции добротности целесообразно поместить в резонатор устройство для селекции продольных типов колебаний. Таким методом можно получить когерентные световые импульсы с энергией, составляющей единицы джоулей, и длиной когерентности до десятков метров.  [c.137]

Нестационарный режим работы лазера, осуществляемый в отличие от чаще всего нежелательного режима релаксационных колебаний целенаправленно, достигается путем возможно более быстрого изменения добротности резонатора лазера (т. е. потерь) или усиления. Принцип модуляции добротности заключается в следующем. Внутри лазерного резонатора в качестве дополнительного элемента помещается оптический затвор. При закрытом затворе генерация не может начаться, и под действием накачки активной среды возрастает инверсия населенностей, значительно превышая порог генерации лазера без введения дополнительных потерь в резонатор. Если затвор откры-  [c.89]

В качестве оптических затворов могут применяться различные системы. Очень быстрые затворы с электронным управлением могут быть реализованы, например, с помощью электро-оптических и акустооптических модуляторов, принцип действия которых обсуждается в п. 4.3.1 (более подробно см., например, [4]). Затвор может быть реализован и чисто механическим способом с помощью вращающихся зеркал или призм. В этом случае при обычных длинах резонатора частота вращения должна составлять несколько сотен герц. Наряду с модуляцией добротности с тем же эффектом может быть использована модуляция усиления. Последний способ особенно пригоден для полупроводниковых лазеров. Вследствие модуляции тока инжекции созданное электрическим способом усиление претерпевает при этом быстрые временные изменения (см. разд. 7.4).  [c.90]

При активной модуляции добротности начальное превышение порогового уровня определяется длительностью первого этапа развития гигантского импульса (см. 19). Длительность этого этапа, в отличие от случая пассивной модуляции добротности, задается моментом выключения потерь. Если при перестройке длины волны сохраняется величина накачки и момент выключения потерь, т. е. длительность первого этапа, то запасенная в среде энергия остается неизменной. Поэтому при активной модуляции добротности, если уровень накачки остается неизменным, то перестройка длины волны генерации сопровождается падением энергии и мощности гигантского импульса, так как величина запасенной в активной среде энергии остается неизменной, а превышение усилением порогового уровня падает в силу падения сечения вынужденного излучения на крыле полосы люминесценции. Уменьшение же превышения коэффициентом усиления порогового уровня ведет к падению энергии гигантского импульса (см.  [c.204]


Глава 4 называется Интенсивность лазерного излучения, скоростные уравнения . В ней изложена простая фотонная модель одномодового лазера, рассмотрены релаксационные колебания, модуляция добротности, балансные уравнения, описывающие важнейшие процессы в многомодовом лазере. Вторая половина главы в основном посвящена анализу эффекта образования провалов на контуре линии затрагиваются также вопросы конкуренции мод. Говоря о проблеме пространственной модуляции усиления в лазере, которая обусловлена структурой поля в резонаторе, уместно на помнить о работах советских авторов [19, 20], носящих приоритетный характер.  [c.6]

При низких значениях коэффициента усиления, характерных для лазеров с непрерывной накачкой, существует возможность срыва генерации уже при относительно небольших потерях, вносимых затвором в резонатор. Поэтому Б таких лазерах могут эффективно использоваться акустооптические затворы как обладающие наиболее низкими потерями в открытом состоянии. Тот факт, что эти затворы плохо запираются, не играет важной роли при условии, что частота следования световых импульсов достаточно высока (5—50 кГц для непрерывно накачиваемого лазера на гранате с неодимом). Однако при низких частотах следования импульсов или, тем более, в режиме одиночных импульсов потери, вносимые акустооптическим затвором в запертом состоянии, могут оказаться недостаточными для срыва генерации непрерывно накачиваемого лазера (и, следовательно, для реализации режима модуляции добротности). Хорошее запирание затвора особенно важно в лазерах с импульсной накачкой. В этом случае не играет роли тот факт, что в открытом состоянии затвор может вносить относитель-  [c.334]

Естественная селекция продольных мод при пассивной модуляции добротности. Рассматривая многомодовую модель лазера, можно показать [106, ПО], что благодаря относительно большой длительности этапа линейного развития генерации в лазере с просветляющимся фильтром успевает проявиться сильная конкуренция между различными модами, вследствие чего одни моды затухают, тогда как другие, напротив, усиливаются и выходят на этап нелинейного развития генерации. Как показано в [110], относительное различие в величине добротности двух мод, равное всего 10 , может приводить при длительности линейного этапа 2-10 не к тому, что указанные моды будут различаться по интенсивности на порядок к началу просветления фильтра. Таким образом, даже незначительное случайное различие в добротности может приводить к резкому усилению отдельных мод ).  [c.374]

Указанный эффект проявляется в заметном сужении спектра генерации лазера (поскольку преимущественно сохраняются моды, находящиеся вблизи центра линии усиления). На рис. 3.48 представлена зависимость эффективной ширины спектра генерации от длительности этапа линейного развития генерации [6]. Чем больше длительность линейного этапа, тем сильнее проявляется эффект естественной селекции продольных мод, тем, следовательно, сильнее сужается спектр генерации. Именно поэтому спектр излучения лазера при пассивной модуляции добротности оказывается существенно более узким, чем при активной модуляции.  [c.375]

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения, Такие Ш. и. соответствуют относит, величинам — отношениям одноимённых физ. величин, описываемых шкалами отношений. К таким величинам относятся коэф. усиления, добротность колебат. системы, коэф. ослабления и т. п. Среди абс. шкал выделяются ограниченные по диапазону шкалы, значения к-рых находятся в пределах от О до 1. Они характерны для кпд, амплитудной модуляции и т. п. величин.  [c.466]

При модуляции сигналов головки на частоте переменная составляющая тока будет изменяться по закону Выделяя переменную составляющую с помощью настроенного на частоту Д резонансного контура с полосой пропускания А / = (что легко осуществить для реальных добротностей контуров при условии Д > и детектируя напряжение частоты Д линейным детектором на выходе сглаживающего фильтра с полосой пропускания А /ф = 2[ , получаем огибающее напряжение, описывающее форму поверхности усиления сварного шва. Непериодический короткий сигнал нарушения сплошности 2 длительностью при реальной ширине спектра А= 2/ , где/р= = l/t , и условии А/(,>2/ даже яри частичном перекрывании спект-  [c.172]

Установка имеет следующие технические характеристики. Энергия одномодового излучения в режиме модуляции добротности 0,5 Дж, а длительность импульса 4-10" с. Коэффициент усиления двухкаскадного усилителя 20, размер голографируемой сцены 200x200x1000 мм, пределы измерения разности оптической длины пути от 1 до 60 мкм. Пределы геометрических размеров объекта от 20 до 2-10 мкм. Погрешность результата измерения  [c.311]

В режиме свободной генерации длительность импульсов излучения составляет 0,1—10 мс, энергия излучения в схемах усиления монщости достигает многих кДш. Характерная длительность импульсов включаемой добротности составляет ок. 10 нс при использовании для модуляции добротности эл.-оятич. устройств. На рис. 2 приведена схема Н. л. с модулиров. добротностью. Характерная энергия лазерного генератора такого типа составляет 1—2 Дж.  [c.320]

Большое соотношение ширины контура усиления Т. л. и частоты межмодовых биений ( 10 ) позволяет достаточно просто осуществлять режим синхронизации мод и получать сверхкороткие импульсы длительностью 10 " — 10 с, ограниченной обратной шириной линии усиления. Так же, как и модуляция добротности, синхронизация мод в т. л. осуществляется как активным, так и пассивным образом, Т, л, может также работать в режиме усилителя  [c.49]

Рубин представляет собой кристалл корунда АЬОэ с примесью ( 0,05%) ионов Сг " , заметающих в кристал-лич. решётке ионы А1. Рубиновый лазер работает по трёхуровневой схеме, в к-рой уровнем 1 является осн. состояние уровнем 2 — полосы fj и уровнем 3 — дублет - . В мощных рубиновых лазерах применяют круглые стержни диам. 2см и дл. 20—30 см. Типичный режим работы—импульсный, реализуются также модуляция добротности, синхронизация мод, усиление мощности. Длина волны генерации рубинового лазера 0,7 мкм.  [c.49]


Прежде чем завершить это общее рассмотрение модуляции добротности, уместно сделать два заключительных комментария. 1) Из вышеприведенного обсуждения ясно, что для осуществления модуляции добротности необходимо иметь достаточно большое время жизни верхнего лазерного состояния, чтобы инверсия населенностей могла достичь больших значений. Обычно время жизни должно быть порядка долей миллисекунды, что реализуется для переходов, запрещенных в электродиполь-ном приближении. Это имеет место для большинства кристаллических твердотельных лазеров (например, на кристаллах Nd YAG, рубина, александрита) и в некоторых газовых (в СОг- и йодном лазерах). Однако в лазерах на красителе и в некоторых газовых лазерах, имеющих важное значение (например, в Не—Ne-или аргоновом лазерах), лазерный переход является электроди-польно разрешенным и время жизни изменяется от нескольких наносекунд до десятков наносекунд. В этом случае метод модуляции добротности неэффективен, поскольку для накопления достаточно большой инверсии не хватает времени. Кроме того, если время жизни т сравнимо со временем tp, необходимым для достижения световым импульсом пикового значения, то значительная доля накопленной к моменту времени t = Q инверсии при > О будет потеряна на спонтанное излучение, а не давать вклад в вынужденное излучение. 2) Представленная на рис. 5.26 временная зависимость модуляции добротности предполагает, что затвор открывается мгновенно, как показано на этом рисунке, или по крайней мере очень быстро по сравнению с временем развития импульса tp (быстрое переключение). В случае медленного переключения могут возникать многократные импульсы (рис. 5.27). Каждый импульс образуется в тот момент времени, когда мгновенное значение усиления g[t) равно мгновенному значению потерь y t). После каждого импульса усиле-  [c.286]

Для осуществления импульсного режима работы лазера обычно используют электроопти-ческие и механические затворы, а также насыщающиеся поглотители. В случае импульсно-перио-дического режима с модуляцией добротности при непрерывной накачке лазера (который имеет меньшее усиление, чем при импульсной накачке) применяют механические затворы или, что более общепринято, акустооптн-ческие затворы.  [c.296]

Выходное излучение Nd YAG-лазера с модуляцией добротности Е = = 100 мДж, Тр = 20 не) необходимо усилить с помощью усилителя на том же кристалле диаметром 6,3 мм с y iweiHieM малого сигнала Со = 100. Считая, что максимальное значение сечения лазерного перехода а 3,5Х ХЮ- " см , вычислите э(1ергию пучка за усилителем н, следовательно, усиление энергии. Вычислите также долю запасенной в усилителе энергии, которая извлекается падающим импульсом.  [c.525]

Параметрическое усиление можно использовать для создания лазеров, помещая световод в резонатор Фабри-Перо. Такой четырехфотонный волоконный лазер недавно был продемонстрирован в эксперименте [36]. При накачке импульсами длительностью 100 пс на длине волны 1,06 мкм от Nd ИАГ-лазера с модуляцией добротности и синхронизацией мод на выходе волоконного четырехфотонного лазера наблюдались импульсы длительностью 65 пс на длине волны 1,15 мкм. Длина резонатора подстраивалась таким образом, чтобы накачка была синхронной. Ширина спектра генерации составляла 100 ГГц в соответствии с формулой (10.4.7).  [c.306]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Усилитель. Проблемы разработки и расчета характеристик усилителя в лазерной системе, в том числе и на основе газов, возникают прежде всего тогда, когда от этой системы необходимо получить более короткие и более интенсивные импульсы излучения, чем при использовании одного генератора с применением техники модуляции добротности и сихронизации мод. Кроме этого усилитель широко используется в лазерных системах с частотной селекцией и селекцией пространственного распределения поля излучения. В таких системах исходное излучение формируется задаюш,им генератором небольшой мош,ности, в кототом разработанными методами селекции частоты и пространственного распределения сравнительно легко добиваются заданных характеристик излучения. Роль усилителя в такой системе сводится к усилению полученного от задаюш,его генератора излучения до нужного уровня мош,ности, причем искажения, вносимые усилителем во все характеристики исходного сигнала, не должны превышать пределов точности их экспериментальных определений. В этом разделе мы остановимся на анализе и расчете характеристик молекулярных газовых усилителей (МГУ) излучения СОа-лазера. Это опять же связано с широким кругом прикладных задач, в которых используют такие системы, начиная от лазерного термоядерного синтеза и прикладной нелинейной оптики в ИК-Диапазоне и кончая современной технологией. Сразу отметим, что весь алгоритм этого анализа и расчета может быть использован при разработке усилителя на любых газах с возбуждением его активной смеси электрическим разрядом. Обш,ей схемой анализа МГУ можно считатьструктурнуюсхему для лазеров (см, рис. 2.3). Для задач усилителя в ней исключается из описания Резонатор и вместо уравнения, описываюш,его режим генерации, в блоке Mil в полуклассическую модель вместо (2.21, г) и в балансную модель вместо (2.22, в) вводятся уравнения, описываюш,ие прохождение излучения в среде усилителя, а именно  [c.77]

Система уравнений (4.2)—(4.6) может быть использована для анализа многомодового режима как при пассивной модуляции добротности, так и при свободной генерации. Для этого следует лишь отбросить уравнение (4.5) и последний член в уравнении (4.6). Ниже будут изложены результаты численного исследования системы уравнений, аналогичной системе (4.4)—(4.6), но несколько упрощенной вследствие использования предположения о том, что внутри резонатора могут существовать только продольные моды (поперечный индекс опущен) и неоднородность продольного распределения плотности мод в резонаторе не учитывается ( F и приняты равными единице). Поскольку контур линий усиления в активной среде чаще всего может быть аппроксимирован лорен-цовской (однородное уширение — рубин, гранат и другие кристаллы) или гауссовской (стекла) зависимостью, имеющей максимум в центре линии усиления, а спектральные кривые поглощения фототропных веществ — некоторой линейной зависимостью с углом наклона, различающимся для разных красителей и рас-  [c.180]

Поскольку при модуляции добротности достигается большой начальный коэффициент усиления активной среды /Со, то прозрачность выходного зеркала может быть заметно выше, чем при свободной генерации. Приближенный анализ оптимальных суммарных потерь излучения в резонаторе приведен в [41]. С точки -Зрения максимума внутрирезонатбрной мощности и минимума. длительности импульса излучения лазера потери резонатора должны быть такими, чтобы выполн ялось соотношение Npo/ p.nop = = 3,5 (при этом накачка считается заданной). В принятых нами обозначениях это соответствует превышению порога генерации - чх = 3,5. Для практики, как правило, интерес представляет не внутрирезонаторная, а выходящая наружу мощность излучения. В этом случае необходима искать оптимальное значение не пол- ных Кпу а только излучательных (через выходное зеркало) потерь резонатора Кр, считая внутрирезонаторные потери заданными, к .  [c.136]


В режиме модуляции добротности лазерный передатчик генерировал импульсы длительностью приблизительно 250 не, поэтому усилитель 8 имел ширину полосы пропускания 3,5 МГц. Усиленный импульс через схему стробирования 10 поступал на расширитель импульсов 11, на выходе которого формировался импульс длительностью 0,25... 1,5 МКС с амплитудой, равной амплитуде входного импульса. Это было необходимо для согласования длительности импульса с постоянной времени люминофора экрана видеоконтроль-ного устройства. Далее сигнал вводился в усилитель 12, коэффициент усиления которого увеличивался со временем по квадратичному закону. Это позволяло выровнять яркости близко и далеко расположенных объектов при их отображении на экране видеоконт-рольного устройства. В самом деле, амплитуда импульсов на выходе фотодетектора 7 пропорцио-  [c.255]

Для некоторых применений необходимы еще большие мощности, чем достигаемые с помощью селектора импульсов. Мощности порядка гигаватт нужны, например, для исследования нелинейных оптических эффектов высоких порядков, а также для эффективного преобразования частоты излучения (см. разд. 8.8). На рис. 5.17 показана схема усилительной лазерной установки, примененной Ротманом и др. для усиления импульсов, генерируемых лазерами на красителе с синхронной накачкой [5.30]. Усиление осуществляется в четырех расположенных последовательно кюветах с красителем, накачка которых производится второй гармоникой излучения ( i = 0,53 мкм) лазера на АИГ Nd с модуляцией добротности. При этом лазер на красителе не содержит селектора импульсов, а их селекция для снижения частоты следования осуществляется в процессе усиления, периодичность которого задается лазером на АИГ Nd, работающим с тактовой частотой около 10 Гц. Длительность импульсов лазера на АИГ Nd с модуляцией добротности равна примерно 10 НС, что в зависимости от случайного соотношения фаз позволяет усиливать один или два импульса лазера на красителе без специальной синхронизации с аргоновым лазе-  [c.184]

Третья глава начинается с обзора различных режимов генерации лазера, включая режимы активной и пассивной модуляции добротности резонатора, синхронизации продольных и поперечных мод, модуляции нагрузки. Вводятся, анализируются и широко используются балансные уравнения (уравнения Статца— Де Марса и их модификации). На основе этих уравнений излагаются различные вопросы динамики одномодовых лазеров переходные процессы, приводящие к затухающим пульсациям мощности излучения, появление незатухающих пульсаций мощности при наличии слабой модуляции потерь, генерация гигантских импульсов при мгновенном включении добротности. Сопоставляются электрооптический и акустоопти-ческнй способы активной модуляции добротности. Подробно анализируются процессы в лазерах с просветляющимися фильтрами. Синхронизация продольных мод обсуждается с использованием как спектрального, так и временного подходов. При рассмотрении самосинхронизации мод в лазере с просветляющимся фильтром применяется временное описание на основе флуктуационных представлений. Временной подход используется также для описания акустооптической синхронизации мод в лазере с однородно уширенной линией усиления. Отдельно обсуждаются методы исследования сверхкоротких световых импульсов.  [c.5]

Коэф. усиления К. равен отногпению мощности, отводимой в нагрузку, к мощности сигнала, поступающего во входной резонатор. Он достигает 60 дБ (10 раз). Это обусловлено почти полным отсутствием во входном резонаторе затрат мощности сигнала на модуляцию электронов но скорости однородно заряженный пучок половину периода потребляет мощность, а половину периода отдаёт её полю. Поэтому достаточно высокий уровень напряжения па зазоре, требуемый для эфф. модуляции, может быть получен и при малой мощности входного сигнала за счёт высокой добротности резонатора, настройки в резонанс и подбора уровня связи с входным фидером, обеспечивающим отсутствие отражения мощности.  [c.383]

Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]


Смотреть страницы где упоминается термин Модуляция добротности усиления : [c.50]    [c.294]    [c.231]    [c.228]    [c.268]    [c.115]    [c.120]    [c.90]    [c.201]    [c.339]    [c.312]    [c.130]    [c.22]    [c.430]    [c.229]   
Принципы лазеров (1990) -- [ c.303 , c.305 ]



ПОИСК



Добротность

Модуляция

Модуляция добротности

Модуляция усиления

Усиление



© 2025 Mash-xxl.info Реклама на сайте