Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резка экзотермическая

Электронно-микроскопические исследования показывают, что от 65 до 83% поверхности контакта стекловолокно-смола содержит микроскопические нарушения сплошности, располагающиеся вдоль волокон. Размер дефектов, связанных с недостаточно хорошей смачиваемостью волокон и плохой пропиткой нити, может достигать 10-15 мкм [15]. Наряду с порами, образующимися вследствие дискретности связи стекловолокно - смола, дефекты в структуре стеклопластика могут возникать, как отмечалось выше, под действием остаточных микронапряжений, когда величина последних превышает прочность связующего или прочность связи стекловолокно-смола. Это происходит при неоптимальном технологическом процессе изготовления изделия, при возникновении резких экзотермических пиков, сопровождающих поликонденсацию связующего.  [c.28]


Коррозия металлов и сплавов газообразными хлором н хлористым водородом при высоких температурах, как это показали работы X. Л. Цейтлина, принципиально отличается от действия других газовых сред на металлические поверхности. В зависимости от природы металла при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии. Так как скорость реакции выделения тепла превосходит скорость его отвода, то металлы в токе хлора могут сгореть.  [c.157]

Эффективность резки может быть значительно повышена в результате введения в зону резки активного газа, например кислорода. Экзотермическая реакция между разрезаемым материалом и кислородом значительно увеличивает выделение энергии в месте взаимодействия излучения с материалом. На этом принципе основан процесс газолазерной резки (ГЛР). Кислород в этом процессе осуществляет следующие функции  [c.128]

На кривой ДТА при температуре 480 °С появляется эндотермический пик, обусловленный началом размягчения стекла, затем следуют два довольно резких пика экзотермического эффекта первый — в интервале температур 560—650 °С, второй — 660—850 °С, обусловленных образованием кристаллических фаз. Выше 890 °С на кривой ДТА появляется второй эндотермический пик, характеризующий начало плавления композиции стекло—кристалл. В соответствии с результатами, представленными на рисунке, образцы стекол были подвергнуты термообработке по определенным режимам (табл. 1).  [c.124]

Самовоспламенение горючих жидкостей определяется наименьшей температурой (°С), ири которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Различают воспламенение (вспышку) паров горючих жидкостей в воздухе при атмосферном давлении, определяемое концентрацией и температурой вспышки (взрыва) по стандартному (ГОСТ 13920—68) методу навесок горючих жидкостей и плавящихся материа.лов в открытом или закрытом тигле. Воспламенение в закрытом тигле происходит при температуре па 20—25° С ниже, чем в открытом.  [c.442]

Температура самовоспламенения <св — самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся пламенным горением (см. также 7.4 справочника Теоретические основы теплотехники. Теплотехнический эксперимент настоящей серии).  [c.413]

Температура тления — температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающееся возникновением тления [16].  [c.414]


Равновесие обратимой реакции и состав продуктов сгорания зависят от химического состава реагирующих веществ, их концентраций, температуры и давления. Наличие продуктов неполного горения характеризуется степенью диссоциации газов, которая в экзотермических реакциях резко увеличивается с повышением температуры и в меньшей мере с уменьшением давления.  [c.334]

В последние годы в цветной металлургии при переработке некоторых сортов сульфидных руд и концентратов начали успешно использовать внутренние энергетические ресурсы, перерабатываемого рудного сырья. В этом случае тепловую энергию, необходимую для осуществления металлургического процесса, получают за счет тепла, выделяющегося при горении сульфидов, обладающих достаточно высокой теплотворной способностью. Металлургические процессы, полностью протекающие за счет тепла экзотермических реакций окисления сульфидов, называются автогенными. Использование автогенных процессов в цветной металлургии имеет огромное народнохозяйственное значение, так как позволяет сэкономить большое количество топлива или электроэнергии. Кроме того, оно ведет к резкому улучшению большинства технико-экономических показателей металлургического производства.  [c.28]

Кислород - бесцветный газ, без запаха, тяжелее воздуха, плотность его при нормальном давлении и комнатной температуре 1,33 кг/м . Очень активен - соединяется со всеми химическими элементами, кроме инертных газов. Реакции веществ с кислородом экзотермические, идущие с выделением теплоты при высокой температуре, - это горение. Получают кислород из воздуха глубоким охлаждением или из воды электролизом. В первом случае воздух в несколько приемов сжимают, каждый раз отводя выделяющуюся теплоту. После каждого цикла сжатия воздух очищают от влаги и углекислого газа. При температуре -194,5 °С воздух становится жидким. Затем его разделяют на кислород и азот перегонкой (ректификацией), основанной на разности температур кипения жидкого азота (-196 °С) и кислорода (-183 °С). При ректификации жидкий воздух переливают в ректификационной колонне. Азот при этом испаряется и отводится через верхнюю часть колонны, а кислород сливается на ее дно. Часть его испаряется и отводится из колонны, а жидкий кислород закачивают в теплоизолированные цистерны (танки), в которых его транспортируют. К месту сварки кислород доставляют газообразным в баллонах синего цвета под давлением 150 кг/см (15 МПа). Ректификацией кислород доводят до чистоты не менее 99,2 % - это технический кислород 3-го сорта 2-й сорт содержит 99,5 %, а 1-й сорт - 99,7 % кислорода. Остальное- азот, аргон и другие примеси. Чем ниже чистота кислорода, тем хуже качество газопламенной обработки металла, особенно резки.  [c.53]

Кислородная резка основана на нагреве металла в зоне реза кислородно-ацетиленовым пламенем (вместо ацетилена может использоваться и другое горючее, например пропан) до температуры его воспламенения. За счет экзотермической реакции окисления металла участок реза дополнительно  [c.520]

Самовоспламенение — резкое увеличение скорости экзотермических объемных реакций, сопровождающихся пламенным горением и (или) взрывом.  [c.477]

Заметим, что если физико-химических процессов, происходящих в среде, несколько и они имеют резко отличающиеся временные масштабы (например, при быстром сжатии среды время установления теплового равновесия много меньше времени установления химического равновесия, которое, в свою очередь, может быть много меньше, к примеру, времени последующего охлаждения среды вследствие высвечивания и Т.Н.), то структура волны может состоять из нескольких областей, отделенных зонами почти однородного состояния. Этим обстоятельством пользуются при фактическом изучении экзотермических волн разной природы. Применение законов сохранения массы, импульса и энергии позволяет при известных начальном состоянии среды и уравнениях состояния прореагировавшей среды определить конечное состояние среды для разных значений скорости волны.  [c.118]


Коррозия металлов под действием хлора имеет особенность, отличающую ее от коррозии под действием других газовых сред. У некоторых металлов при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии, металлы в токе хлора могут даже сгореть.  [c.22]

Лазерная резка. В последние годы получает развитие разрезание лазерным лучом, при котором невидимый мощный Луч когерентного монохроматического света расплавляет, испаряет металл и разрезает его в экзотермической реакции с использованием кислорода в качестве режущего газа.  [c.211]

Интересный эффект можно получить, если использовать газолазерную резку , т. е. в процессе резки обдувать металл струей кислорода. Тогда значительная часть энергии, затрачиваемая на процесс резания, получается за счет экзотермических реакций, в которые вступает металл и кислород.. При этом использование струи кислорода не только снижает требование к мощности, но и увеличивает скорость и глубину резания, а также, позволяет получить высококачественную кромку разреза, поскольку струя кислорода уносит из зоны резания расплав и продукты сгорания металла [14].  [c.66]

Экзотермическая резка металлов. В последние годы за рубежом разработано оборудова-  [c.392]

Приведем краткие сведения о горении, необходимые нам в дальнейшем. Горение представляет собой экзотермическую химическую реакцию (химическое превращение), протекающую достаточно быстро. При этой реакции происходит соединение горючего с окислителем (например, с кислородом). При известных условиях возникает воспламенение. Воспламенение может быть самопроизвольным (при определенных Т w. р) или вызвано поджиганием. Различают гомогенное горение (газы, заранее перемешанные газовые смеси) и гетерогенное горение (жидкое и твердое горючее). Горение может быть ламинарным. При таком горении пламя представляет собой резко очерченную границу, которую можно трактовать как поверхность разрыва ширина фронта пламени имеет порядок сотых долей миллиметра.  [c.481]

Резка металлов обычно производится с использованием кислорода для удаления расплава из полости реза, так как струя кислорода, кроме того, окисляет часть нагретого лазерным лучом металла и вместе с расплавом выдувает из полости реза и окислы. Экзотермический характер реакции окисления металла обусловливает выделение дополнительного количества теплоты, необходимого для снижения вязкости образующихся окислов и поддержания непрерывности процесса резки. Кроме того, окисление струей кислорода нагретой поверхности металла способствует увеличению поглощения их лучистой энергии и, следовательно, повышению эффективности нагрева, так как чистые металлы поглощают 2—6 % тепловой энергии луча, а окислы металлов — почти 100 %. Расход кислорода составляет 0,14—0,06 л/с [3].  [c.29]

Температура самовоспламенения — самая низкая температура смеси паров жидкости с воздухом, при нагреве до которой происходит резкое увеличение скорости экзотермических реакций, приводящее к возникновению пламенного горения.  [c.4]

В последнее время ведутся поиски оплавления и наплавки покрытий с использованием эффекта саморазогревания. В частности, резкий экзотермический эффект показывают алюмотермические реакции , . -  [c.82]

Сущность кислороАИой резки. Кислородной резкой называют способ разделения металла, основанный на использовании для его нагрева до температуры воспламенения теплоты газового пламени и экзотермической (с выделением тепла) реакции окисления металла, а для удаления окислов — кинетической энергии режущего кислорода.  [c.102]

Для общей ориентировки в вопросе о том, какие ядерные реакции являются экзотермическими, можно воспользоваться кривой удельной энергии связи (см. рис. 2.5). Из этой кривой видно, что в среднем удельная энергия связи с ростом массового числа А сначала растет, а затем при А 50—60 достигает максимума (называемого железным , так как значению А = 56 соответствуют ядра изотопов железа), после чего снова убывает. Ядерная реакция экзотермична, когда конечные ядра связаны сильнее начальных. Поэтому можно утверждать, что, как правило, экзотермическими для легких (например, А л 10) ядер будут реакции синтеза более крупных ядер, а для тяжелых — реакции расщепления ядра на достаточно крупные осколки. Наиболее сильно кривая удельной энергии связи наклонена на краях. Поэтому наиболее выгодными энергетически будут реакции синтеза для самых легких ядер, а реакции расщепления — для са мых тяжелых. Кроме того, из-за резкого пика в энергии связи а-частицы сильно экзотермическими являются некоторые реакции наилегчайших ядер с образованием а-частиц в конечном состоянии.  [c.561]

Для осуществления реакции синтеза ядер необходимо, чтобы кинетическая энергия относительного движения этих одноименно (положительно) заряженных частиц была достаточной для преодоления взаимного электростатического отталкивания. Это означает, что при увеличении кинетической энергии ядер эффективное сечение реакции резко возрастает до максимального значения за счет увеличения вероятности преодоления куло-новского барьера. Высота этого энергетического барьера пропорциональна произведению зарядов ядер, вступающих во взаимодействие. Поэтому из множества энергетически выгодных (экзотермических) реакций синтеза ядер практический интерес представляют лишь реакции с изотопами водорода — дейтерием  [c.151]

А 3 о т-м е т а л л. Азот активнее взаимодействует с металлами, нежели водород. При этом образуются различные нитриды. Нитриды А1, Ti, Va, Zr, Сг, Mo, Мп экзотермичны и более устойчивы при пониженной температуре. Железо образует два нитрида Fe2N экзотермический и Fe N эндотермический. Резко эндотермичиы и более устойчивы при повышении температуры нитриды Си, As, Hg.  [c.173]


Внутренний механизм процесса модифицирования чугуна ещё не получил общепризнанного объяснения. Основные гипотезы сводятся к следующему [24, 25]. 1. В процессе раскисления жидкого чугуна модификатором образуются неметаллические включения, которые служат дополнительными центрами кристаллизации и графитизации, предотвращающими также возможность переохлаждения. 2. В процессе модифицирования устраняются или связываются газы (в частности, водород), являющиеся стабилизаторами цементита, что облегчает графитизацию. 3. При растворении частиц модификаторов, содержащих кремний, в жидком чугуне образуются кратковременно существующие участки с резко повышенной концентрацией кремния, сдвигающей эвтектическую точку чугуна влево. В результате чугун в этих участках становится заэвтекти-ческим, выделяются включения графита (спель), служащие центрами дальнейшей графитизации чугуна. 4. При вводе модификатора в результате экзотермических реакций, протекающих при его растворении, создаются местные перегревы в общей массе жидкого чугуна. Они способствуют выделению в участках перегрева включений графита, которые в дальнейшем действуют как центры кристаллизации и графитизации и предотвращают протекание графитизации в условиях переохлаждения. Получаемые в результате этого изолированные включения графита улучшают механические свойства чугуна.  [c.181]

Термограмма с избытком железного порощка, восстановленного водородом (кривые 3 и 4 на рис. 8) дает при температуре 153° С сильный экзотермический эффект, хотя и менее резкий, чем это наблюдалось для присадки хлорэф-40.  [c.173]

Качество футеровки контролируется с помощью сигнализатора, а в тигельных печах обязательно еще проводится и внешний осмотр в начале каждого цикла работы. Не следует допускать образования мостов из твердых шихтовых материалов над ванной жидкого металла, приводящих к неконтролируемому местному перегреву и разрушению футеровки. Это особенно опасно при переплавке стружки. Для сохранения футеровки и предупреждения прорыва жидкого металла к индуктору нельзя подвергать футеровку резким термическим ударам, механическому повреждению при загрузке шихты, поворотам и сотрясению в холодном состоянии. Быстрое повышение температуры металла может быть вызвано добавлением в чугун легирующих компонентов, экзотермических смесей охлаждение — присадкой большого количества холодной шихты, науглероживателя и т. п. При добавлении в жидкий металл холодных кусков шихты возможен выброс металла. Особенно опасна загрузка влажной шихты, со льдом, снегом или маслом (поэтому нежелательно производить переплавку брикетированной стружки), так как при этом наблюдаются сильные взрывы, фонтанирование и выбросы жидкого металла. Нужно обеспечивать загрузку только сухой и чистой шихты, применять для заполнения печи желобы, склизы, бадьи закрытого типа с тем, чтобы не было необходимости плавильщику непосредственно участвовать в загрузке материалов. Поскольку при переплавке некачественных шихтовых материалов образуется большое количество газов, дыма, каждая плавильная печь должна иметь вентиляционное устройство.  [c.53]

Некоторые данные, полученные Скоттом [20] с помощью прибора Сечкина и подтвержденные в работах коллег автора, приведены в табл. 8.2 для ряда полимеров и полимерных материалов и на рис. 8.1 для негорючего полиэфирного связующего. На рис. 8.2 приведена кривая для пенопласта на основе фенолоформальдегидной смолы, в котором загорание и самовозгорание резко не проявляются наблюдаемый эффект можно объяснить самовозгоранием с образованием кратковременных вспышек — разновидностью самовозгорания, оговоренной в стандарте [17]. В некоторых случаях вследствие замедленного характера деструкции и карбонизации наблюдается загорание не всего образца, а лишь отдельных его участков, которое продолжается в течение коротких промежутков времени, Из рис. 8.2 видно, что в интервале температур 200—400 °С процесс протекает с экзотермическим эффектом. Для ряда других исследованных пенопластов на основе фенолоформальдегидной смолы характерно поведение, аналогичное слоистым феностеклопластикам, характеристики которых приведены в табл. 8.2.  [c.329]

Процессы отверждения (образование густосетчатой структуры) эпоксидных или фенолсформальдегидных полимеров резко замедляются при Т < Гс, хотя реакция еще не закончена [113, 146, 149]. Температура стеклования может быть выше To в только в том случае, когда температура внутри образца вследствие экзотермического характера процесса отверждения выше внешней температуры отверждения.  [c.111]

Теплоты смешения для систем этой группы резко отрицательны, кривые ДЯ(л ) близки к симметричным, при повышенйи температуры уменьшается экзотермический эс фект смешения  [c.35]

Катастрофической коррозией называют окисление металла, происходящее при высокой температуре с непрерывно возрастающей скоростью. Ее причиной может быть экзотермическая реакция окисления металла, когда скорость удаления выделяющегося в ходе реакции тепла меньше скорости самой реакции это ведет к резкому росту температуры, достигающей значений, при которых металл может воспламениться (например, ниобий). Катастрофическая коррозия наступает также, когда образующийся окисел металла при высокой температуре летуч (молибден, вольфрам, осмий, ванадий). Сплавы, содержащие малые количества молибдена и ванадия, часто подвергаются катастрофической коррозии из-за образования низкоплавкях смесей окислов под слоем окалины. Эти смеси становятся жидким электролитом с хорошей электропроводностью. В этих условиях пористая окалина играет роль катода, с большой поверхностью, а металл основы становится анодом в результате возникает интенсивная электрохимическая коррозия. Если температура плавления смеси окислов ниже температуры окружающей среды, то жидкая фаза растворяет окалину и обнажает металл. Аналогичный эффект наблюдается в газовой фазе, содержащей окислы ванадия. Известны случаи катастрофической коррозии высоколегированных хромоникелевых сплавов под воздействием топочных газов, содержащих V2O5. Значительные количества ванадия содержатся в продуктах переработки некоторых сортов нефти.  [c.71]

Принцип лазерной резки заключается в том, что остросфокусирован-ный лазерный луч иащавляют на поверхность материала. Под его воздействием металл быстро расплавляется. Пары и жидкий металл удаляются из зоны резания потоком инертного газа, кислорода или воздуха. Применение кислорода позволяет значительно повысить скорость и качество резки За счет получения дополнительного тепла в ходе экзотермической реакции кислорода с материалом. Пригодность материалов к лазерной резке зависит от степени поглощения ими лазерного излучения, а также их теплопроводности. Хорошо поддаются лазерной резке неметаллы — керамика, кожа, ткань, древесина ИТ, п. практически не поддаются ей материалы с высоким коэффициентом отражения и высокой теплопроводностью — медь, латунь, золото, серебро и т. п.  [c.287]

Химический анализ композиции слюдинитовая бумага— полимер К на содержание углерода показал, что уже через 24 ч нагревания при 500°С деструкция полимера К заканчивается. Однако данные о механической прочности исключают предположение, что образующиеся при деструкции полимера аморфные кремнезем и алюмосиликат существуют между слюдяными чешуйками в виде инертных веществ. Можно предположить, что в процессе термоокислительной деструкции полимер К вступает в химическое взаимодействие с мусковитом, активированным в результате термохимической обработки слюды при получении слюдинитовой бумаги [65]. Это предположение было подтверждено исследованием химического состава и структурных превращений, протекающих в этом материале при нагревании [66]. Термогравиграмма слюдинитовой бумаги характерна для мусковита, прошедшего термообработку при 800°С в диапазоне 20—800°С слюдинитовая бумага не претерпевает изменений. Термогравиграмма полимера К характеризуется двумя экзотермическими эффектами с максимумами при 627 и 695°С. Начало экзотермического эффекта (430°С) совпадает с началом резкого падения массы образца. На дифференциальной кривой нагревания образца слюдинита, пропитанного полимером К, начало  [c.50]


При 800—850° начинается экзотермическая реакция, скорость которой резко увеличивается при 1000°. При этой температуре увеличивается удельный вес глины, что приводит к усадке глины. Полагают, что в этих условиях AI2O3 2SIO2 существует в виде свободных окислов, причем увеличение удельного веса объясняют полимеризацией молекул. По мере дальнейшего повышения температуры уменьшается растворимость в кислотах соединения, образующегося из окислов.  [c.214]


Смотреть страницы где упоминается термин Резка экзотермическая : [c.327]    [c.119]    [c.286]    [c.172]    [c.53]    [c.253]    [c.619]    [c.74]    [c.37]    [c.392]    [c.45]    [c.107]   
Машиностроение Энциклопедия Оборудование для сварки ТомIV-6 (1999) -- [ c.392 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте