Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выделение водорода (водородная

Во всех приведенных выше рассуждениях предполагалось, что доминирующей катодной реакцией было восстановление кислорода. Часто именно так и бывает, однако имеется и вторая катодная реакция, обычно протекающая в форме выделения водорода (водородная деполяризация). Такая деполяризация часто является основной в кислых растворах, в растворах, содержащих комплексообразующие агенты, и при коррозии весьма активных металлов.  [c.92]


Наиболее частые случаи коррозии в практике —это процессы, протекающие в растворах неокислительных кислот с выделением водорода — водородная деполяризация, или в нейтральных растворах солей. Иногда оба этих процесса могут протекать параллельно.  [c.90]

Процессы коррозии металлов, у которых D = Н+, т. е. катодная деполяризация осуществляется водородными ионами по реакции (332) с выделением водорода, называют процессами коррозии металлов с водородной деполяризацией.  [c.248]

Если катодный процесс состоит из двух параллельно идущих катодных реакций — ионизации кислорода и выделения водорода (смешанная кислородно-водородная деполяризация), то анодная и катодная поляризационные кривые пересекутся на коррозионной диаграмме правее точки D (рис. 185), соответствующей началу водородной деполяризации на катодных участках, например в точке К. Степень контроля катодного процесса в этом случае характеризуется соотношением силы коррозионного тока, определяемого процессом ионизации кислорода 1о, = и силы коррозионного тока, определяемого процессом выделения водорода /и, = /г —/д,  [c.277]

В нейтральных растворах с pH = 7 гальванические элементы, составленные из большинства имеющих техническое значение металлов, работают без выделения газообразного водорода, так как потенциал разряда ионов водорода отрицательнее, чем потенциал анода. Только начиная с определенного значения pH, при котором потенциал анода отрицательнее потенциала разряда водородных ионов, процесс коррозии может сопровождаться выделением водорода. Металлы с очень электроотрицательным по-  [c.42]

Явление перенапряжения при катодном процессе восстановления водорода имеет большое практическое и теоретическое значение, так как, если бы выделение водорода не сопровождалось значительным перенапряжением, коррозионные процессы с водородной деполяризацией протекали бы значительно более интенсивно, чем это имеет место в реальных условиях.  [c.43]

Металлы с потенциалами более отрицательными,чем потенциал водородного электрода, называют неблагородными, они растворяются в кислотах с выделением водорода.  [c.28]

Очень опасен водородный износ, связанный с выделением водорода при разложении воды, нефти и нефтепродуктов, деструкцией пластмасс при трении, применении водородного топлива.  [c.16]

Этот тип поляризации обусловлен замедленностью электродной реакции или, говоря другими словами, потребностью в энергии активации для начала электродной реакции. Наиболее ярким примером может служить восстановление ионов водорода на катоде -> — е. Активационная поляризация для этого процесса называется водородным перенапряжением (или перенапряжением выделения водорода). Считают, что на платиновом катоде реакции протекают в такой последовательности. Сначала идет относительно быстрая реакция  [c.53]


Повышение температуры (возрастает /о). Для металлов, корродирующих с выделением водорода, уменьшение водородного перенапряжения является одним из факторов, объясняющих увеличение коррозии с возрастанием температуры.  [c.56]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]

Эта реакци я быстро протекает в кислой , но медленно в щелочной илн нейтральной водной среде. Например, скорость коррозии железа в деаэрированной воде при комнатной температуре менее 0,005 мм/год. Скорость выделения водорода в этом случае зависит от наличия в металле примесей с низким водородным перенапряжением. На поверхности чистого железа также может выделяться водород, поэтому железо высокой чистоты корродирует в кислотах, но значительно медленнее, чем техническое.  [c.100]

Если контактирующие металлы погружены в неаэрируемые растворы, где коррозия сопровождается выделением водорода, увеличение площади более благородного металла приводит к увеличению коррозии менее благородного. На рис. 6.6 предста ены поляризационные кривые для анода, слабо поляризованного по сравнению с катодом, на котором происходит выделение водорода (катодный контроль). Наклон кривой 1 отвечает поляризации более благородного металла, имеющего высокое водородное перенапряжение. Наклоны кривых 2 и 3 отвечают металлам с низким водородным перенапряжением. Проекции точек пересечения анодных н катодных поляризационных кривых на ось Ig I дают соответствующие гальванические токи. Заметим, что любой металл, на котором происходит разряд ионов водорода, является водородным электродом, который при давлении водорода 0,1 МПа имеет равновесный потенциал —0,059 pH вольт. Рис. 6.7 иллюстрирует случай, когда корродирующий металл контактирует с более благородным, имеющим переменную площадь. На оси абсцисс вместо логарифма полного тока нанесен логарифм плотности тока. Если анод площадью Ла контактирует с более благородным металлом площадью Л , то плотность гальванического тока на аноде в результате контакта будет равной  [c.114]

Результаты исследований свидетельствуют о том (рис. 8—10), что хотя увеличение концентрации угольной кислоты в растворе и усиливает выделение водорода, общий уровень коррозии при низких температурах невелик. Повышение температуры до 60 °С способствует развитию коррозионных процессов и с поглощением кислорода, и с выделением водорода. Скорость коррозионного процесса, протекающего с водородной деполяризацией, составляет всего 2,5—14% общей скорости коррозии.  [c.21]


Установлено, что коррозионный процесс в чистом конденсате при 20—60 °С практически не сопровождается выделением водорода. Значительное выделение его наблюдается только при 80 °С, однако повышение pH до 9,0 резко уменьшает скорость процесса при этой сравнительно высокой температуре. При концентрации Oj OO мг/кг водородная деполяризация существенна только при 40 °С и выше.  [c.22]

При коррозии металлов с водородной деполяризацией скорости частных реакций водорода и растворения металла лимитируются чисто кинетическими ограничениями, в подавляющем большинстве случаев — замедленностью переноса заряда, т. е. электрохимическим перенапряжением. Наблюдающиеся при этом закономерности можно представить графически в виде так называемых коррозионных диаграмм. На рис. 1 в координатах ток — потенциал изображены катодная (выделение водорода) и анодная (ионизация металла) поляризационные кривые с чисто кинетическими ограничениями. Для того чтобы диаграмма отвечала коррозионному процессу, на ней, согласно формуле (6), на оси абсцисс справа ( в области отрицательных значений потенциалов) располагается равновесный потен-  [c.13]

Расчеты по уравнению (59) не согласовываются с опытными данными при переходе от коррозии с водородной деполяризацией к коррозии со смешанной или с кислородной деполяризацией, так как уравнение (44), из которого получено уравнение (59), было введено в предположении, что единственным катодным процессом, ответственным за коррозию, является выделение водорода, следовательно, расчетная величина у должна совпадать с опытной лишь в случае чисто водородной деполяризации. Только при этом условии опытные значения коэффициента торможения определяются замедлением процесса выделения водорода  [c.35]

Для водородного электрода характерно перенапряжение, которое вызвано замедленным разрядом водородных ионов. Причины, приводящие к понижению перенапряжения выделения водорода на металле, способствуют повышению скорости коррозии. Так, например, чистые металлы корродируют медленнее металлов, содержащих примеси, которые смещают потенциал водорода в сторону отрицательных значений. Факторы, повы-  [c.22]

Большое значение имеет использование инертного азота для предотвращения водородного взрыва при аварии реактора. В случае крупной аварии, когда обычная и аварийная системы охлаждения выходят из строя, остаточного тепла после остановки реактора хватает на то, чтобы расплавить оболочку реактора. Тогда радиоактивное топливо и другие радиоактивные материалы попадают в помещение, где установлен реактор. При высокой температуре циркониевая оболочка топливных элементов взаимодействует с водой с выделением водорода. Кроме того, часть воды под действием ионизирующего излучения разлагается на водород и кислород.  [c.88]

Другим фактором, который следует учитывать при катодной защите, является возможность наводороживания металла, что может приводить к водородной хрупкости и растрескиванию высокопрочных материалов. Если начальный потенциал анодного процесса отрицательнее равновесного потенциала водорода и перенапряжение выделения водорода на защищаемой поверхности невелико, то полная защита делается практически невыгодной. Например, катодная защита магниевых сплавов по этой причине малоэффективна.  [c.142]

Уравнения (4.26) и (4.28) позволяют детально рассмотреть вопрос о влиянии состава раствора на водородное перенапряжение, что представляет существенный интерес при изучении коррозионных процессов, когда катодным процессом служит разряд ионов водорода (кислотная коррозия) или же саморастворение амфотерных металлов в щелочных средах (щелочная коррозия с выделением водорода). Прежде всего остановимся на влиянии концентрации ионов водорода. Если общая ионная концентрация раствора достаточно высока, фг ПОтенциал становится исчезающе малым. Тогда вместо (4.26) и (4.28) будем иметь  [c.79]

После того, как оказывается достигнутым предельный диффузионный ток по кислороду (т. е. з спокойных растворах уже при относительно очень небольшой. плотности катодного тока), электродный потенциал резко смещается в сторону отрицательных значений, так что становится возможным разряд ионов водорода (или разложение воды с выделением водорода), и сила тока вновь начинает возрастать, следуя кривой водородного перенапряжения.  [c.89]

В настоящее время не существует надежных способов защиты нелегированных хромистых сталей от коррозии в условиях полного погружения. Пассивная пленка не сохраняется даже в быстром потоке. Применение катодной защиты при плотностях тока, необходимых для поляризации, сопровождается выделением водорода, вызывающим водородное вспучивание или растрескивание [33].  [c.64]

Водородная усталость. Как указано выше, выделение водорода в зоне коррозионно-механического разрушения металлов возможно вследствие катодных процессов при электрохимической коррозии, а также гидролиза коррозионной среды в вершине развивающейся трещины или других дефектах. Участие в разрушении металлов может принимать также находящийся в них металлургический водород. В последнее время водород все чаще используют как технологическую среду. Обширны перспективы применения водорода в качестве топлива в энергетике и транспортной технике, что продиктовано, главным образом, требованиями защиты окружаю-щй среды от загрязнения. Как известно, водород в процессе горения вредных примесей не выделяет и поэтому с экологической точки зрения является идеальным топливом.  [c.18]


Наиболее глубоко и всесторонне исследована катодная реакция с выделением водорода водородная деполяризация). Установлено, что общая реакция (1.18) разряда ионов водорода на катоде в кислых средах идет последовательно связанными ступенями. Первая ступень — диффузия гидратированных ионов водорода к катоду. Вторая — разряд гидратированных ионов водорода с образованием адсорбированных атомов водорода (Н++е ->-Надс). Третья ступень — образование из адсорбированных атомов водорода молекул водорода (2Надо->-Н2). Четвертая — диффузия молекул водорода от катода или образование и отрыв пузырьков газообразного водорода  [c.38]

Г. В. Акимов указывал, что тонкая иленка электролита представляет собой слабое препятствие для ироиикповения кислорода из атмосферы воздуха к корродирующей металлической по-верхност . Это обстоятельство обусловливает очень интенсивное иоступление кислорода на катодные участки металла. В условиях коррозионного процесса с выделением водорода кислородная и водородная деполлризашо протекают параллельно и независимо друг от друга.  [c.173]

При температуре до 35°С коррозионная стойкость титана в аэрированных растворах фосфорной кислоты удовлетворительна при концентрации не выше 30% (рис. 91). С повышением температуры граница устойчивости титана значительно смещается в сторону меньших концентраций. При 100° С устойчивость титана сохраняется в кислоте концентрации менее 3%. Зависимость скорости коррозии титана от концентрации серной кислоты имеет сложный характер. Это объясняется тем, что серная кислота меняет свои свойства с изменением степени гидрата-и,ми, зависящей от концентрации. Характер этой зависимости при 40°С показан на рис. 192, на котором наблюдается два максимума скорости растворения титана — при концентрациях 40 и 75%. При достижении первого максимума серная кислота имеет высокие значения электронроводно-сти н концентрации водородных ионов процесс выделения водорода при этом усиливается вследствие адсорбции водорода титаном. Второй максимум соответствует восстановлению серной кислоты до сероводорода и свободной серы.  [c.283]

В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области  [c.107]

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.  [c.319]

Избирательное действие большинства адсорбционных (особенно катионноактивных) ингибиторов на водородную деполяризацию иллюстрируется рис. 9. Из рисунка видно, что независимо от того, на какую реакцию — катодную или анодную — влияет ингибитор, уменьшение общей скорости коррозии и скорости восстановления кислорода проявляется менее заметно, чем снижение скорости выделения водорода. Иными словами, для действия адсорбционных ингибиторов характерно уменьшение общей скорости коррозии с одновременным увеличении доли кислородной деполяризации [5 13 128]. В известной мере поэтому большинство адсорбционных  [c.36]

Индивидуальные адсорбционные ингибиторы характеризуются преобладанием двойнослойного (энергетического) эффекта над блокировочным (механическим или экранирующим). Они образуют на поверхности металла неупорядоченный ажурный слой с чередованием в нем отдельных частиц ингибитора и кластеров. Такой несплошной мономолекулярный слой почти не тормозит процессы, ограничиваемые диффузией (например процесс восстановления кислорода) и, кроме того, не создает препятствия для сцепления органических и неорганических покрытий с металлической поверхностью. Индивидуальные адсорбционные ингибиторы (например катионного типа) целесообразно применять для защиты металлов от коррозии, протекающей с водородной деполяризацией, особенно в тех случаях, когда металлическое изделие должно в последующем проходить нанесение гальванических покрытий, эмалирование и т. д. Способность таких ингибиторов избирательно подавлять реакцию выделения водорода и повышать долю кислородной деполяризации делает их пригодными для защиты от коррозии тех металлических изделий, которые затем будут подвергаться разного рода механическим воздействиям и нагрузкам.  [c.37]

В реальных условиях на реакцию ионизации — разряда ионов металла — накладывается какая-либо другая реакция, чаще всего выделение водорода или окисление кислорода. При реакции выделения водорода равновесный потенциал в выбранной среде отвечает величине н г- Применяя принцип независимого протекания электродных реакций и принцип суперпозиции поляризационных кривых [25], мы получим новую анодную кривую растворения металла , начинающуюся уже не от равновесного потенциала металла ,., а от его коррозионного потенциала Есог (кривая 2, рис. 17, а). Скорость коррозии (в отсутствие внешнего тока) будет равна при этом i or- Если на поверхности корродирующего металла будет присутствовать примесь более электроположительного металла, то равновесный потенциал водородного электрода не изменится, но скорость выделения водорода при тех же потенциалах будет выше (кривая 5, рис. 17, а), что приведет к сдвигу потенциала коррозии в положительную сторону ( ror) и к увеличению ее скорости до i or. Ситуация, однако, существенно меняется, если равновесный водородный потенциал положительнее, чем Е . Тогда введение металлов, на которых облегчается выделение водорода, приводит не к усилению, а к резкому замедлению коррозии, так как коррозионный потенциал окажется в этом случае в положительной области (рис. 17, б).  [c.50]


Поляризация при увеличении силы тока в гальваническом элементе снижает напряжение на его клеммах. Напротив, при пропускании тока через электролизер требуется приложить большее напряжение. В случае, когда поляризацию можно отнести к опредеяеииой электродной реакции, ее можно называть перенапряжением. Перенапряжение — это разность между потенциалом электрода, через который пропускается ток, и равновесным потенциалом исследуемой электродной реакции. Водородное перенапряжение, например, имеет место при электролитическом выделении водорода по реакции  [c.17]

При электроосаждении некоторых металлов возможна побочна реакция катодного выделения водорода. Образующийся атомны водород может диффундировать в металл основы и поглощаться ик Результатом этого, например, в случае высокопрочных сталей може быть водородное охрупчивание. Водород можно, однако, удалит путем термической обработки, которая соответственно снижае водородную хрупкость.  [c.78]

Для предотвращения водородной хрупкости рекомендуется вместо нанесения гальванических и химических металлопокрытий применять защиту методом вакуумного осаждения, металлизацию, облицовку металлом, нанесение органических покрытий или другие процессы, при которых не происходит выделения водорода. При этом для стальных сосудов, в которых возможно возникновение водородной хрупкости, применение металлических, органических и неорганических покрытий можно рекомендовать только при условии, если эти сосуды изготовлены не из высокопрочных сталей, сооружения не находятся под создающими высокие напряжения нагрузками, покрытия не содержат химически активного цинка или другого металла, который в конкретных условиях среды способен электрохйми-  [c.46]

Раэность между равновесным потенциалом электрода И потенциалом на котором выделяется водород, называется перенапряжением выделения водорода. Установлено, что воДородаое перенапряжение зависит от вида металла и увеличивается в ряду металлов Pt, Pd, W, Ni, Fe, Ag, u, Zn, St, Pb. Водородное перенапряжение увеличивается с ростом pH максимального значения оно достигает при pH, близком к 7, уменьшаясь с дальнейшим ростом pH. Водородное перенапряжение уменьшается с повышением температуры. Величина его зависит также от вида и количества в растворе поверхностно-активных добавок.  [c.34]

В результате комплексного исследования влияния легирования на стойкость сталей к растрескиванию в сероводородсодержащих электролитах предложен ряд низколегированных сталей, обладающих в данных средах повышенной стойкостью [28]. Кроме того, предложены стали, легированные редкоземельными элементами, а также высоколегированные сплавы Ni—А1 — сплав после горячей прокатки и старения, Ni- u— Fe - сплавы типа инконель после отж-ига или холодной обработки и ряд других. Есть основание считать, что редкоземельные элементы рафинируют сталь от металлоидов (кислород, водород), вязывают мышьяк, серу и фосфор в тугоплавкие соединения и вместе с тем снижают перенапряжение выделения водорода на металле, препятствуя водородной хрупкости [8].  [c.120]

Скорость электрохимического выделения водорода зависит от строения двойного слоя, на границе металл—раствор. Поэтому наличие веществ, способных адсорбироваться на поверхности электрода, оказывает существенное влияние на условия разряда ионов водорода. Водородное перенапряжение в кислых растворах уменьшается при адсорбции анионов, адсорбция катионов приводит к увеличению перенапряжения. Такой результат был установлен для кадмия, при катодной поляризации которого в растворе серной кислоты потенциал проходит точку нулевого заряда. Этот переход сопровождается скачкообразным увеличением перенапряженияг которое можно было объяснить десорбцией анионов и началом адсорбции катионов.  [c.70]

В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотериые металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии.  [c.171]


Смотреть страницы где упоминается термин Выделение водорода (водородная : [c.151]    [c.220]    [c.338]    [c.235]    [c.260]    [c.64]    [c.112]    [c.240]    [c.15]    [c.42]    [c.64]    [c.8]   
Основы учения о коррозии и защите металлов (1978) -- [ c.0 ]



ПОИСК



Водород

Водородная

Выделение

Выделение водорода

Выделение водорода (водородная деполяризация



© 2025 Mash-xxl.info Реклама на сайте