Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал конструкционный. Требования

На поле производственного рабочего чертежа наряду с уже рассмотренными изображениями изделия, его размерами и обозначениями изображений приводят обозначения допускаемых отклонений размеров, формы и расположения поверхностей, их шероховатости, а также различные надписи, характеризующие изделие и материал, технические требования и таблицы. Эти данные изучают в таких дисциплинах, как технология конструкционных материалов, сопротивление материалов, теория механизмов и машин, детали машин, основы взаимозаменяемости и технические измерения и др. Чтобы дать общее представление об оформлении рабочего чертежа, кратко рассмотрим указанные требования к их оформлению.  [c.280]


Обрабатываемость - одно из технологических свойств конструкционных материалов - это комплексная взаимосвязь физико-механических и других свойств конструкционного материала и требований, учитывающих возможности обработки этого материала лезвийными режущими инструментами.  [c.319]

Одной из основных проблем материаловедения и металлургии является создание материалов с наибольшей вязкостью разрушения и наибольшей прочностью. Последнее требование выражено не вполне четко, так как прочность не является константой материала. Поэтому будем различать два понятия металлургическую прочность и конструкционную прочность. Под первой понимается (обычно приводимое в справочниках по материалам) значение прочности, полученное на гладких лабораторных образцах определенных размеров из материала в состоянии поставки. Прочность изделия из этого же материала (конструкционная прочность) иногда оказывается существенно меньшей. Особенно часто это происходит при приближении к области хрупкого разрушения.  [c.197]

Выбор той или иной композиции биметалла, естественно, зависит от условий службы данного биметалла, т. е. плакирующий слой биметалла должен быть стойким против агрессивного воздействия данной среды, а основной слой должен обеспечивать необходимую конструкционную прочность и жесткость изделия. При этом стоимость биметалла, как правило, должна быть ниже стоимости однородного коррозионностойкого материала. Последнее требование иногда может не соблюдаться в том случае, если биметалл имеет принципиально новые служебные свойства, которые не могут быть получены у однородного материала.  [c.8]

Толщина покрытия, необходимая для защиты конструкционных пластмасс, определяется продолжительностью работы комбинированного материала и требованиями к его термостойкости. Часто такие изоляторы, как двуокись циркония или пенистые силикаты, используют для нанесения на покрытия, предохраняющие конструкционные пластмассы от эрозии. Совсем недавно для защиты пластмасс начали применять сотовидные металлы, покрываемые сверху керметами. Такие комбинированные материалы используют для тепловой защиты.  [c.13]

Основные способы производства заготовок — литье, обработка давлением, сварка. Способ получения той или иной заготовки зависит от служебного назначения детали и требований, предъявляемых к ней, от ее конфигурации и размеров, вида конструкционного материала, типа производства и других факторов.  [c.21]

Наряду с разработкой и освоением рациональной технологии производства ядерного топлива большое значение для развития атомной техники имеют конструкционные материалы, применяемые в производстве специального промышленного и исследовательского оборудования. Помимо обычных требований механической прочности, теплопроводности, жаростойкости, коррозионной, эрозионной стойкости и т. д. к ним предъявляются специфические, определяемые особенностями атомной техники требования радиационной стойкости, необходимой степени поглощения нейтронов в зависимости от производственного назначения материала и пр. С учетом этих требований выбирались и изучались различные марки стали для элементов конструкции атомных реакторов, искусственного графита для элементов систем замедления и отражения нейтронов.в активной зоне реакторов, алюминия для защитных оболочек твэлов, предотвращающих возникновение химической реакции между химически несовместимыми урановыми сердечниками твэлов и теплоносителем (например, водой), бетона для нужд противорадиационной защиты и т. д. Применительно к этим же требованиям отечественной промышленностью освоены в производстве новые конструкционные материалы, ранее получавшиеся лишь в крайне ограниченных количествах на лабораторных установках — тяжелая вода, бериллий, цирконий и его сплавы и др.  [c.163]


В большинстве случаев новые конструкционные материалы разрабатываются для конкретных конструкций. Работоспособность и надежность этих конструкций в условиях эксплуатации определяют требования к создаваемым материалам. Может иметь место и обратный процесс появление нового материала с повышенными свойствами стимулирует создание конструкций, которые смогут работать в более тяжелых условиях, чем раньше, с большей долговечностью и надежностью.  [c.215]

Углеродистая сталь выпускается обыкновенного качества, специального назначения и качественная. К углеродистой стали обыкновенного качества относится строительный и конструкционный материал с содержанием углерода до 0,62 %, при производстве которого не предъявляется специальных высоких требований к качеству шихты, процессам плавки и разливки. По способу выплавки эта сталь подразделяется на мартеновскую, кислородно-конвертерную,  [c.66]

В послевоенные годы область применения стали и вообще сплавов на основе железа суживается, они становятся преимущественно конструкционным материалом, качество которого определяется в основном прочностью. Требования к жаропрочности, окалиностойкости и физическим свойствам материалов послевоенной техники настолько повышаются, что во многих случаях для их обеспечения потребовались сплавы на других основах — никеля, кобальта, тугоплавких металлов и пр. Однако ограничение требований к качеству стали показателями прочности не означает их упрощения. Усложнение условий работы объектов современного машиностроения и повышение их ответственности исключают возможность однозначно характеризовать сталь пределом прочности, как это делалось многие годы. Требование прочности ныне входит в критерий качества материала наряду с новым для материаловедения требованием надежности.  [c.192]

Такое положение явилось результатом основательного изучения существенных особенностей и свойств этого сложного многофазного и многокомпонентного сплава. На научной основе кардинально усовершенствован технологический процесс получения из него отливок, что привело к резкому улучшению их свойств. В настояш,ее время чугун используется в промышленности как конструкционный материал, свойства которого можно в широких пределах регулировать и варьировать в соответствии с требованиями эксплуатации конструкций.  [c.205]

Развитие современной техники предъявляет высокие требования к изделиям машиностроения с точки зрения снин<ения веса конструкций, повышения их долговечности, надежности, производительности. Одним из эффективных путей решения этой проблемы является широкое использование синтетических материалов (пластмассы, синтетические смолы, синтетический каучук, химические волокна, лаки и краски) в машиностроении. Среди полимеров наибольшее распространение в качестве конструкционного материала получили пластмассы. Ценные физико-механические, химические, диэлектрические, оптические и другие свойства давно превратили пластмассы из заменителей черных и цветных металлов в самостоятельные конструкционные материалы, которые успешно конкурируют с традиционными материалами. Благодаря своим свойствам, пластмассы стали важным фактором ускорения технического прогресса во всех областях новой и новейшей техники.  [c.210]

В настоящее время, когда графит в качестве конструкционного материала активной зоны и отражателя мощных энергетических реакторов эксплуатируется при более высоких параметрах, возникли дополнительные требования к его свойствам. Последнее обстоятельство потребовало проведения специальных экспериментов и теоретических исследований с целью разработки научных основ обеспечения длительной работоспособности кладок энергетических реакторов.  [c.5]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]


Промышленность выпускает поликарбонат (дифлон по ТУП 7-66) двух марок марка К — для изготовления деталей конструкционного назначения, марка Э — для изготовления электроизоляционных изделий. Материал должен отвечать следующим требованиям  [c.118]

Технологические требования. Конструкция насоса должна отвечать целому ряду технологических требований. Без их соблюдения не может быть гарантировано качество изготовления, а следовательно, ресурсные и другие характеристики ГЦН. Различают две группы требований. Одну из них составляют требования, определяющие рациональность принятых конструкционных решений с точки зрения технологичности, а именно рациональный выбор материала выбор простейших геометрических форм деталей оптимальный выбор баз, системы простановки размеров их предельных отклонений, допусков формы и расположения поверхностей и шероховатости поверхностей деталей  [c.22]

Выбор материалов для изготовления корпусов глубоководных аппаратов является сложной проблемой, так как материал должен удовлетворять противоречивым требованиям высокой прочности, плавучести, обитаемости, низкой стоимости, стойкости к коррозии, технологичности при изготовлении. Хотя широкий ряд конструкционных материалов пригоден для изготовления корпусов, но ни один из них не является оптимальным для всего диапазона глубин.  [c.329]

Требования, предъявляемые к анодным материалам, практически те же, что и к катодным, однако температура, при которой находится анод в работающем преобразователе, редко превышает 1000° С. Поэтому, исключая нейтронно-физические ограничения, для анодов могут быть использованы обычные, вакуумные конструкционные материалы. Однако чтобы получить на аноде, покрытом пленкой цезия, наименьшее значение работы выхода, необходимо использовать в качестве анодных материалов металлы с большой работой выхода, на которых эта пленка адсорбируется лучше. Поэтому в конструкциях энергетических ТЭП в качестве материала анода чаще всего используют молибден, никель или ниобий, так как они удовлетворяют и другим требованиям. Ввиду того, что ниобий является хорошим высокотемпературным геттером, способным поглощать выделяющиеся газы, в ряде конструкций ТЭП преимущество отдается последнему.  [c.35]

Задача предупреждения коррозии трубок конденсаторов предусматривает прежде всего правильный выбор конструкционного материала с учетом качества охлаждающей воды, а также строгое соблюдение ряда требований по технологии изготовления этих трубок и самого конденсатора и мероприятий по повышению коррозионной стойкости, металла трубок. Одно из (важных мест во всей этой системе мероприятий занимает регулирование состава н простейшая обработка охлаждающей воды конденсаторов. Забор воды, предназначенной для охлаждения конденсаторов турбин, должен быть организован  [c.71]

Конструкционные материалы для реакторов, отвечающие требованию совместимости свойств. Выбор материала для защитных оболочек. Совместимость — это такая комбинация свойств, при которой конструкционные материалы могут находиться в контакте друг с другом без химического или металлургического взаимодействия. На совместимость свойств конструкционных материалов со свойствами теплоносителей значительное влияние оказывает коррозионная стойкость других частей контура.  [c.319]

Приведены сведения о составах, свойствах и назначении современны конструкционных материалов. Впервые классификация материалов и их описание представлены по основным эксплуатационным (служебным). требованиям, предъявляемым к деталям машин. Согласно этим требованиям материалы распределены по группам, каждая из которых определяется комплексом стандартных и нестандартных свойств, от которых зависит реализация эксплуатационных характеристик. Нетрадиционная классификация справочного материала поможет конструкторам и технологам на научно-технической основе выбирать материалы для деталей машин, приборов и приспособлений, а также назначать рациональные технологические процессы их обработки.  [c.4]

Среди требований, предъявляемых процессом резания, следует отметить наименьшую сопротивляемость конструкционного материала деформированию и разрушению (образование стружки) его в процессе резания лезвийными инструментами возможность достижения заданных шероховатости и качества поверхностного слоя склонность обрабатываемого мате-  [c.319]

При выборе состава и формы активной зоны приходится находить компромисс между противоречивыми требованиями повышенное воспроизводство требует высокой доли топлива, ведущей к высоким объемным тепловым нагрузкам, и вступающей в противоречие с необходимостью интенсивного теплоотвода, требующей, в свою очередь, повышения долей теплоносителя и конструкционного материала стремление улучшить баланс нейтронов (соотношение между паразитным и продуктивным поглощением нейтронов) вступает в противоречие с желанием снять с единицы объема больше тепловой мощности энергии с увеличением утечки нейтронов в зоны воспроизводства повышается не только КВ, но и критическая масса реактора  [c.163]

Общими потребительскими требованиями к конструкционным сталям являются наличие у них определенного комплекса механических свойств, обеспечивающего длительную и надежную работу материала в условиях эксплуатации, и хорощих технологических свойств (обрабатываемости давлением, резанием, закаливаемости, свариваемости и др.). Необходимые технологические и потребительские свойства конструкционных сталей и сплавов в основном обеспечиваются рациональным выбором химического состава, улучшением металлургического качества, соответствующей термической обработкой и поверхностным упрочнением.  [c.170]

Полимерные покрытия получают наклеиванием полимерной пленки, напылением порошкообразного полимера (или другими методами) на поверхность конструкционного материала, например металлопласта. Одним из основных технологических требований к таким покрытиям является требование не расслаиваться при механической обработке.  [c.239]


Сварка плавлением полуфабрикатов многослойного материала. При изготовлении изделий новой техники требуются конструкционные материалы, обладающие повышенной надежностью, длительным ресурсом работоспособности с достаточными механическими свойствами основного металла и сварного соединения. Многослойные полуфабрикаты на основе высокопрочных алюминиевых сплавов, титана и магниевых сплавов, полученные совместной горячей прокаткой, отвечают предъявляемым требованиям.  [c.513]

Slugging — Закупоривание. Нездоровая практика добавления отдельного фрагмента материала в сварное соединение до или во время производства сварки, приводящая к образованию сварного соединения, в котором сварной шов не полностью создан за счет расплавленного присадочного металла или основного металла и который, следовательно, не выполняет конструкционные требования.  [c.1045]

Перечисленные группы деталей отличаются между собой по толщине стенок (толстостенные и тонкостенные, осесимметричные и с переменной толщиной стенки), по физико-механическим характеристикам материала (конструкционные, углеродистые, средне- и высоколегированные стали, цветные сплавы), по диаметрам и длине отверстий (диаметры 10—150 мм, длины до 1500 мм), по требованиям, предъявляемым к обработанной поверхности (шероховатость = 0,4 80, точность от 5-го до 1-го класса), по особенностям сложившихся технологических процессов изготовления деталей (обработка на станках-автоматах, автоматических и поточных линиях, наличие термообработки) и т. д. Поэтому для успешного решения вопроса о введении деформирующего протягивания в технологические процессы изготовления столь разнородных деталей потребовалось глубокое исследование этого метода обработки. Такое исследование было выполнено в ИСМ АН УССР в 1964—1974 гг. В процессе его проведения наряду с представленными выше исследованиями качества обработанной поверхности и обрабатываемости металла, упрочненного деформирующим протягиванием, решались также следующие вопросы  [c.162]

Посадочные поверхности валов и цапф шлифуют для уменьшения шероховатости. Материал осей и валов назначают с учетом условий их работы, чаще всего используют конструкционные стали марок 20, 30, 40, 45, 50, а также стали Ст5, Стб. При повышенных требованиях к несущей способности и долговечности цапф валы изготовляют из сталей с улучшением марок 35, 40, 40Х, 40ХН. Для увеличения износостойкости цапф в подшипниках скольжения применяют стали 20, 20Х, 12ХНЗА с последующей цементацией цапф.  [c.311]

Это требование обусловлено несколькими причинами. Укажем на две важнейшие. Во-первых, всякая машина или сооружение проектируется на долговременную нагрузку, которая определяется техническим заданием на новую конструкцию в рамках принятых норм. Такую нагрузку иногда назь1вают номинальной. В упомянутых нормах имеются указания о предельных значениях кратковременных перегрузок в типовых эксплуатационных ситуациях. Однако известно, что в работе отдельных экземпляров машин или сооружений изредка наблюдаются нагрузки, превышающ ие нормативные. Во-вторых, любой конструкционный материал поставляется на рынок с некоторым разбросом по характеристикам прочности. Для каждого материала суш ествуют нормы минимальных значений этих характеристик, ниже которых приемка осугцествляп ься не должна. Однако пробы производятся выборочно, из-за чего за ворота завода-изго-товителя иногда (хотя и нечасто) уходят партии материала с пониженными характеристиками прочности. Сказанное можно проиллюстрировать схемой на рис. 2.13.  [c.69]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

В установках для подготовки нефти используют оборудование различного назначения теплообменники, насосы, дегидраторы, резервуары и др. Среди них наиболее металлоемкие и весьма ответственные резервуары, предназначенные для предварительного отстоя обводненной нефти, сбора и отстоя сточной воды, сбора и хранения товарной нефти и нефтепродуктов. Исходя из условий эксплуатации резервуаров, к конструкционному материалу предъявляют сложный комплекс требований он должен обладать высокой прочностью при достаточно высокой пластичности и вязкости, минимальной склонностью к хрупкому разрушению, хладоломкости и старению, низкой чувствительностью к надрезам, хорошей свариваемостью, высокой коррозионной стойкостью к воздействию атмосферы, грунтовых вод, хранимых нефтей и нефтепродуктов. Основной конструкционный материал для изготовления резервуаров — сталь различных марок. В последние годы получают все большее распространение алюминиевые сплавы для изготовления отдельных узлов резервуаров — крыш и верхних поясов вертикальных цилиндрических резервуаров.  [c.164]


Основными требованиями, предъявляемыми к конструкционным металлам и сплавам являются прочность и пластичность, высокие упругость и износостойкость, жаростойкость и жаропрочность, стойкость к криогенным температурам, высокая коррозионная стойкость, стойкость к тепловым ударам и перегрузкам, технологичность, стойкость к радиационому облучению, экономичность. Непременным требованием, предъявляемым ко всем авиационным материалам, является их высокий коэффициент качества, т. е. отношение величины данной характеристики материала к плотности.  [c.261]

Характер зависимости пластических циклических и односторонне накопленных деформаций от числа циклов нагружения и времени в общем случае определяется историей нагружения. Учитывая многообразие возможных сочетаний режимов нагружения по скоростям, температурам и длительностям вьщержек, для решения конкретных задач об определении НДС целесообразно использовать экспериментальные диаграммы деформирования, полученные для конкретных условий рассматриваемой задачи. Указанная необходимость получения прямых зкспериментальных данных и невозможность прогнозиров ия максимальных повреждающих эффектов обусловливают требование проведения прямых экспериментов по определению сопротивления деформированию конструкционного материала при наиболее опасных режимах термомеханического нагружения.  [c.22]

Применяемые в машинах валы (табл. 1) различают по конфигурации, размерам, материалу и техническим требованиям на их изготовление. Материал валов — главным образом конструкционные и легированные стали 35, 40, 40Х, 40Г2, 35ХС и др. Во многих случаях валы подвергают термической обработке. Технические требования на изготовление валов указаны в конструкторской документации. При их отсутствии или необходимости уточнения технические требования могут быть взяты из табл. 2.  [c.176]

Толстолистовая сталь — основной конструкционный материал (полуфабрикат) для изготовления корпусов судов, рам локо готивов и вагонов, станин машин, котлов и химических аппаратов, инженерных сооружений (мостов, ферм) и др. В зависимости от назначения к прочностным и химическим свойствам толстолистовой стали предъявляются различные требования. В табл. 12 приведен стандартный сортамент толстолистовой стали.  [c.92]

По назначению чугунные отливки могут быть подразделены на несколько укрупнённых групп в зависимости от предъявляемых к отливкам требований. В пределах этих групп возможно более дробное деление. На основе комплекса необходимых свойств к укрупнённым группам относятся а) отливки обычные машиностроительные, изготовляющиеся из серого чугуна, в котором наиболее выпукло представлены свойства чугуна как конструкционного материала характерные механические свойства, хорошая обрабатываемость, улучшенные литейные свойства, облегчающие получение отливок с наиболее слоишыми очертаниями, пониженная чувствительность к тепловым напряжениям, способствующая применению отливок в тех случаях, когда они подвергаются действию тепловых ударов (изложницы и кокили), и наибольшая дешевизна в связи с возможностью применения наиболее дешёвой шихты и наиболее экономично работающих плавильных агрегатов (вагранки)  [c.1]

Перлитные стали, в основном малолегированные и в меньшей мере углеродистые, получили наибольшее применение в качестве конструкционного материала блоков. Относительно низкая стоимость и технологичность этих сталей являются их большим преимуществом, однако стали эти обладают невысокой общей коррозионной стойкостью. Поэтому одной из главных задач рациональной организации водного режима является максимальное снижение скорости коррозии этих сталей и уменьшение степени перехода продуктов их коррозии в воду. Это особенно важно для блоков закритических параметров, для которых единственным методом выведения примесей из цикла могут быть только отложения на поверхностях нагрева, недопустимые по условиям надежности работы блока. Следовательно, главное требование к протеканию коррозии перлитных сталей сводится к доведению ее до уровня, исключающего отложения продуктов коррозии предшествующего тракта на поверхностях нагрева и способствующего минимальному износу самих поверхностей нагрева.  [c.25]

К настоящему времени в СССР и за рубежом имеются в эксплуатации и на различных стадиях создания и проектирования крупные промышленные АЭС с натриевыми и гелиевыми теплоносителями,-в которых реализуются различные конструкционные схемы ТА. В предлагаемой книге анализируются указанные кон-струции, а также методы расчетного и экспериментального обоснования для создания оптимальных и надежных конструкций. Анализ позволил определить основные тенденции в развитии конструкций ТА, выявить проблемы, возникающие при их проектировании и сформулировать требования, вытекающие из специфики АЭС и используемых в них теплоносителей. Особое внимание уделено вопросам проектирования ТА. На основе имеющейся информации и личного опыта авторы попытались довести до читателя представление о наиболее рациональных конструкционных решениях и сформулировать соответствующие рекомендации, которые могли бы помочь проектантам в практической деятельности. Излагаемый в книге материал может оказаться полезным при проектировании теплообменных аппаратов для других отраслей промышленности.  [c.3]

Величина Кс принципиально может быть найдена для любого конструкционного материала из опыта на разрушение образца с достаточно острой трещиной. Допустим, предполагается испы-тыбать образец на растяжение в виде полосы с боковым надрезом (схема 2 в табл. 24.2). Такой образец должен быть сначала подвергнут циклической нагрузке, с тем чтобы из надреза выросла усталостная трещина. Последнее является обязательным требованием, потому что именно усталостная трещина обладает наименьшим радиусом кривизны в своем устье по сравнению с трещиной, образованной любым другим способом. И еще два специфических требования  [c.423]

К конструкционным материала применяемым в вакуумных система помимо требований в отношении ксЯ струкциоиной прочности, технологичности н экономичности, предъявляю  [c.462]

Растворы от выщелачивания, а также сточные воды имеют сложный солевой состав. Это обстоятельство предъявляет жесткие требования к выбору коррозионной устойчивости конструкционного материала основного и вспомогательного оборудования. Конструкционный материал, помимо низкой стоимости и химической устойчивости в агрессивных средах, должен легко подвергаться механической и термической обработке по общепринятым, освоенным машиностроительными заводами техноло- гиям изготовления химического оборудования. Поскольку процессы осуществляются при температурах от 20 до 90° С и аппараты в основном не подвергаются интенсивному воздействию обрабатываемых жидких неоднородных систем, это в какой-то мере способствует более широкому выбору недефицитных конструкционных материалов.  [c.293]

На некоторые виды проката комбинат имеет сертификаты соответствия. Так, орган по сертификации ВЙИИС — Материал-Тест подтвердил соответствие требованиям российских стандартов проката толстолистового из углеродистой стали обыкновенного качества, проката тонколистового холоднокатаного из низкоуглеродистой качественной стали для холодной штамповки. Получены сертифигаты по требованиям "Регистра Ллойда" на горячекатаный прокат для судостроения и немецкой фирмы ТЮФ-Серт на горетекатаный конструкционный прокат общего назначения.  [c.614]

Совокупность изменений структуры материала, вносимых облучением, называют радиационным повреждением. Отрицательное следствие радиационных повреждений — охрупчивание, а также радиационное распухание и радиационная ползучесть, вызывающие изменение формы и размеров. Поэтому одно из основных требований, предъявляемых к облучаемым материалам, — их высокая радиационная стойкость (см. п. 8.1.2). Главные конструкционные материалы энергетических ядерных реакторов — стали перлитного класса (корпуса во-до-водяпых реакторов на тепловых нейтронах) и хромоникелевые стали аустенитного класса (детали активной зоны и внутрикорпусных устройств в реакторах на тепловых и быстрых нейтронах, оболочки твэлов и корпуса быстрых реакторов).  [c.341]


Смотреть страницы где упоминается термин Материал конструкционный. Требования : [c.70]    [c.274]    [c.170]    [c.285]    [c.150]    [c.169]   
Машиностроение Энциклопедия Т IV-12 (2004) -- [ c.39 ]



ПОИСК



Материал конструкционный

Материалы для требования

Общие требования, предъявляемые к конструкционным материалам

Основные требования, предъявляемые в машиностроении к конструкционным материалам

Совместимость конструкционного, технологического и вспомогательного материалов, способов пайки СП1, СП2 и ТРП с требованиями, предъявляемыми к механическим свойствам паяных соединений

Требования, предъявляемые к конструкционному материалу



© 2025 Mash-xxl.info Реклама на сайте