Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планка постоянная определение

Еще две планки с выступом УСП-278 укреплены на концах соединительных угольников УСП-550 для установки двух валиков УСП-360 со специальными пальцами. Они фиксируют и одновременно поджимают фланцы к цилиндру соединительной муфты. Один из этих фиксирующих пальцев (задний) закреплен в планке постоянно, для установки в определенном положении всего свариваемого узла. Другой палец (подвижный) установлен так, чтобы можно было снимать с приспособления узел после его сварки.  [c.209]


Хотя этот принцип весьма общий, численная величина h является такой, что неточности не проявляются для окружающих нас тел с их массами и скоростями. Однако когда мы имеем дело с массой и скоростью фотонов и атомных частиц, неточности могут быть оценены и любая теория, с помощью которой можно попытаться описать поведение этих частиц, должна исходить из этих неточностей. Интересно заметить, что если бы численная величина h была близка к единице вместо 6,625 X 10" эрг сек, вычисление траектории мяча или ружейной пули было бы невозможно могла бы быть вычислена только вероятность того, что данный предмет можно обнаружить в определенном объеме и что он обладает количеством движения в заданном интервале. Ньютоновские законы движения, очевидно, справедливы для обычных систем только потому, что постоянная Планка — очень маленькая величина.  [c.74]

Оно позволяет определить постоянную Планка измерением коротковолновой границы сплошного рентгеновского спектра, которая в соответствии с (8.58) зависит от приложенной разности потенциалов (рис. 8.25). Такие измерения оказались одним из самых точных способов определения этой константы.  [c.445]

Как определить постоянную Планка из данных по фотоэффекту Какие еще существуют методы определения этой константы  [c.460]

Действительно, опыт подтвердил, что при испускании рентгеновских волн наблюдается максимальная частота (коротковолновая граница), определяемая из написанного условия, где У — ускоряющая разность потенциалов, е — заряд электрона, V — частота границы и /г — постоянная Планка. Волны более короткие (большие V) никогда не наблюдаются, волны же более длинные соответствуют превращению лишь части кинетической энергии электрона в излучение. Определение коротковолновой границы рентгеновского спектра может быть выполнено весьма надежно. Поэтому такого рода опыты используются как один из наиболее совершенных методов определения значения постоянной Планка с помощью соотношения hv — еУ. Наилучшие измерения, выполненные этим методом, дали /г = 6,624-10 Дж-с.  [c.641]

Для устранения противоречия датский ученый Н. Бор в 1913 г. предложил новую — вантовую — теорию рассмотрения атомных процессов. Бор постулировал существование в атоме стационарных электронных орбит с определенным моментом количества движения, кратным постоянной Планка (Й = 1,5Х XI0 эрг-сек)  [c.16]

По теории Бора стационарные состояния атома соответствуют определенному значению момента количества движения электрона на его орбите. Момент количества движения должен равняться nh, где h — постоянная Планка, а п — целое число, называемое главным квантовым числом  [c.57]


Перейдем к выводу формулы Планка. Пусть в замкнутом объеме находится атомарный газ при определенной температуре. Пусть в этом объеме присутствует и электромагнитное поле со спектральной плотностью энергии гд., т- Считаем, что система находится в термодинамическом равновесии. Наличие термодинамического равновесия не означает, что энергия каждого атома газа остается неизменной. Между атомами и полем происходит постоянный обмен энергией. Атомы поглощают и испускают кванты, переходя из одних состояний в другие. Однако эти процессы не нарушают термодинамического равновесия системы в целом.  [c.143]

Формула Планка заключает в себе два закона излучения абсолютно черного тела — законы Стефана — Больцмана и Вина. При этом из формулы Планка получаются как внешняя форма этих законов, так и входящие в них постоянные а и Ь, которые выражаются через универсальные постоянные Н, к и с. Пользуясь экспериментально определенными значениями о и Ь, можно вычислить значения 1г и к. Именно таким путем было получено первое численное значение постоянной Планка. Впоследствии был предложен ряд способов определения /г, основанных на различных физических явлениях. Все они приводят к одним и тем же значениям.  [c.146]

В литературе можно встретить резко различающиеся по физическому содержанию определения термина фундаментальные постоянные . Одно из них приведено в предыдущем абзаце [l" . В [19] можно найти следующее определение Это величины, которые используются при атомистическом описании в физике и химии, которые обычно могут быть измерены с большой точностью , и там же другой автор предлагает Это те постоянные, которые входят в выражения, описывающие атомные и квантовые явления, в качестве множителей, определяющих порядок величины квант действия А (так иногда называют постоянную Планка.— О. С.), квант электрического заряда е, скорость света с и т.п. . Нетрудно заметить, что физическое содержание этих определений далеко не идентично. Определения [19] объяв-  [c.31]

Дается в виде порций энергий — фотонов. Каждый фотон движется со скоростью света и имеет определенную энергию, заданную соотношением е=Н, где постоянная Планка, Л л 6,63 10- " Дж-с.  [c.403]

Это выражение при Z=1 точно совпадает с эмпирическим значением для водородных термов (см. формулу (5) 1). Величина R совпадает с постоянной Ридберга, ее численное значение, определенное по формуле (12) через заряд и массу электрона, постоянную Планка и скорость света, хорошо согласуется с эмпирическим.  [c.22]

ЗАКОН [периодический Менделеева свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов Планка описывает мощность излучения черного тела как функцию температуры и длины волны подобия Рейнольдса коэффициенты, необходимые для вычисления гидравлического сопротивления геометрически подобных тел, равны, если равны соответствующие числа Рейнольдса в этом случае оба потока подобны полного тока <для токов проводимости циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром для магнетиков циркуляция вектора магнитной индукции вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром обобщенный циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром и током смещения ) постоянства <гранных углов в кристаллографии по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл состава каждое химическое соединение, независимо от способа его получения, имеет определенный состав ) преломления (света отношение синусов углов падения и преломления на границе двух сред равно отношению скоростей света в этих средах Снеллиуса отношение синусов углов падения и преломления луча электромагнитных волн на границе раздела двух диэлектрических сред равно относительному показателю преломления двух сред (второй среды по отношению к первой) )  [c.235]


Планка закон излучения 20, 315 — постоянная 305 Поверка ИПТ 49, 177, 302 Поверочная схема 49 Погрешность измерения абсолютная 53 динамическая 54 инструментальная 54 методическая 53, 55, 60, 388 определение 53 относительная 53 приборная 54  [c.493]

Для устранения этих противоречий в 1913 г. Н. Бором была предложена модель атома, принципиально новым элементом которой по сравнению с моделью Резерфорда явилось наличие особых стационарных электронных орбит. По предположению Бора, их особенность заключается в том, что находящиеся на них электроны по некоторым неизвестным причинам не теряют энергию на излучение и обладают строго определенным моментом количества движения, кратным постоянной Планка — к  [c.6]

Свинцовые трубы применяются преимущественно для домовых водопроводов и отличаются своим удобством в работе. Эти трубы пользуются распространением благодаря гибкости, сравнительно легкой обработке, возможности укладки, без применения фасонных частей. Недостатком этих труб является сужение сечения при крутых изгибах, провисание горизонтально подвешенных труб, порча крысами, прогрызающими их в поисках воды, легкость смятия труб от случайных ударов и т. п. Для устранения провисания этих труб необходимо устройство опорных приспособлений, напр, в виде деревянных планок на определенных расстояниях между собой. Снаружи свинцовые Т. почти не окисляются, т. к, раз образовавшийся налет окиси свинца (РЬО) предохраняет их от дальнейшего окисления. Главный недостаток свинцовых Т. с санитарной точки зрения—это способность свинца при известных условиях растворяться в воде и вызывать вслед- ствие этого отравления. Яд этот настолько опасен, что даже небольшое содержание его в питьевой воде недопустимо. Относительные исследования этого явления показали, что свинец растворяется в воде в том случае, если он попеременно приходит в соприкосновение то с воздухом то с водою. Поэтому необходимо, чтобы свинцовые трубы постоянно находились под напором если же вследствие недостатка давления в городской сети трубы верхних этажей по временам остаются без воды, то растворение свинца делается возможным, и в этом случае необходимо в верхних этажах применять трубы из другого материала. Предполагали, что содержание в воде свободной углекислоты (СОа) тоже способствует растворению свинца поэтому понятно, что долгое время приписывали именно мягкой воде свойство растворять свинец в жесткой воде углекислые соли связывали СОа, образуя двууглекислые соли. В речной воде присутствия свободной СОа нельзя ожидать, но в грунтовых водах, растворяющих при проходе через слои почвы значительное количество почвенной СОа, последняя может находиться в большом избытке и могла бы давать повод к растворению свинца. Но оказалось, что СОа играет ничтожную роль в отравлении воды свинцом, т. е. образующийся на трубах налет углекислого свинца (РЪСОз) нерастворим Б воде и предохраняет свинец от дальнейшего растворения. Гораздо более опасными в смысле растворителей РЬ являются азотнокислые, хло-  [c.50]

Другое изменение, внесенное в 1948 г., состояло в небольшом уточнении температуры, приписанщ)й точке затвердевания серебра, с 960,5 до 960,8 °С. Это позволило уменьшить разрыв производной по МТШ-27 в точке соединения термометра сопротивления и термопары. В интервале, определенном оптическим пирометром, было принято новое значение постоянной С2= 1,438 см К в соответствии с уточнениями значений атомных констант. Кроме того, формула Вина была заменена формулой Планка. Численные расхождения температур по МТШ-27 и МПТШ-48 показаны на рис. 2.2. В 1948 г. было решено также не пользоваться выражением стоградусная шкала и ввести термин градус Цельсия . Это изменение было частично вызвано стремлением устранить возможные недоразумения в тексте на французском языке, где  [c.48]

Если бы уровни энергии в действительности являлись геометрическими линиями, то атомы излучали бы строго монохроматическую волну и спектр был бы строго линейчатым (дискретным). Одиако, как показывают опыты, атомы излучают спектр частот определенной ширины. Уширение спектральной линии, согласно квантовой теории, объясняется тем, что сами энергетические уровни обладают некоторой шириной Дт, величина которой определяется так называемым соотношением неопределенностей Гейзенберга AojT h, где т — время жизни атома на энергетическом уровне шириной А(о, h — постоянная Планка. Из этого соотношения вытекает, что Асо /г/т, т. е. естественная ширина линий, согласно квантовой теории, обратно пропорциональна времени жизни атома в начальном состоянии.  [c.41]

Соотношение (8.53) позволяет определить постоянную Планка из измерения наклона прямых, выражающих зависимость потенциала задержки от час готы падающего на фотокатод излучения. Весьма точное определение h таким методом было выполнено П. И. Лукирским и С. С. Прилежаевым в 1930 г. Для измерений использовали сферический конденсатор, внутренний шарик которого был изготовлен из никеля и освещгится светом ртутной лампы. Спектральные линии ртути, возбуждавшие фотоэффект, выделялись монохроматором с кварцевой призмой. В этих опытах наблюдался относительно крутой спад кривых, характеризующих зависимость силы фототока от приложенного  [c.434]

Нетрудно убедиться в том, что формула Планка заключает в себе упоминавшиеся выше законы черного излучения, и именно закон Стефана—Больцмана и закон Вина. При этом из формулы Планка не только получается внешняя форма этих законов, но и входящие в них постоянные а Ь могут быть вычислены из универсальных постоянных А, к, с (см. упражнения 230 и 232). Обратно, пользуясь экспериментально найденными значениями о и А, можно вычислить значения hak. Именно таким путем и было получено первое численное значение постоянной Планка. Впоследствии был указан целый ряд путей определения А, покоящихся на совершенно иных физических явлениях (ср. гл. XXXII). Все они приводят к одинаковым значениям.  [c.700]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]


Тем не менее вселенский аспект проблемы фундаменталь-ны с постоянных приобретает в наши дни все большее значение и известность, причем отсутствие определения открывает широчайшие просторы для фантазии составителей различных списков фундаментальных постоянных. Это еще больше затрудняет понимание проблемы учащимися. Приведу некоторые примеры. В [23] можно прочесть Основными или фундаментальными физики считают сегодня девять постоянных величин. Вот они скорость света, постоянная Планка, единица электрического заряда, масса протона, постоянная <1)ерми для слабых взаимодействий, постоянная тяготения, постоянная ббла, средняя плотность вещества во Вселенной и так называемая космологическая постоянная . В список фундаментальных постоянных включается ряд новых констант. Характерно, что авторы [23] не считают и этот список окончательным ...молчаливо предполагается, что другие константы, если они имеются, могут быть выражены через основные. Однако это совсем не так. Сегодая известны еще по крайней мере два кандидата в наш список, характеризующие ядерные взаимодействия, которые выразить через перечисленные константы не удается. Так что список фундаментальных констант в какой-то мере условен .  [c.35]

В настоящее время общепринятой считается точка зрения М. Планка, который писал ...размерность какой-либо физической величины не есть свойство, связанное с существом ее, но представляет собой некую условность, связанную с выбором системы ед1шиц измерений [29]. Противоположной точки зрения придерживался А. Зоммерфельд, считавший, что размерность связана с самой сущностью физической величины. С этим нельзя согласиться по довольно простой причине. Некоторые величины физики, по определению, безразмерны, но описывают совершенно разли шые физические явления. Например, безразмерны коэффициент трения и постоянная тонкой структуры а, являющаяся важнейшим i руктурным элементом квантовой электродинамики. Приводившаяся выше размерность величины элементарного заряда в системе СГС не вызывает никаких конкретных представлений о физической сущности этой величшхы.  [c.40]

В табл. 37.7 приведены экспериментально определенные значения спинов 1 магнитных моментов ц и электрических квадрупольных моментов Q основных и некоторых долгоживущих метастабильных состояний для четио-иечетных, нечетно-четных и нечетно-нечетных ядер. В таблицу не включены четно-четные ядра, у которых значения спинов и магнитных моментов основных состояний равны нулю. Значения /, ц и Q даны в единицах Й, (Й. =й/2л, где А — постоянная Планка), в ядер-ных магнетонах Ця и фемтометрах соответственно. Значения спинов, указанные в круглых скобках, получены косвенным путем.  [c.1047]

I С/ц I от (О, показанная на рис. 6, явилась предметом исследований Мил-ликена и использовалась им для определения Л = е I 7о /(со — (о .р). Было получено наиболее точное для того времени значение постоянной Планка h = 2nn = 6,56-10-2 Дж-с.  [c.23]

По поводу этого уравнения авторы работы делают следующее заключение Полученное нами уравнение является одномерным обобщенным уравнением Фоккера—Планка в случае переменных структурных чисел Оно справедливо, если время корреляции т ор много меньше постоянных времени системы и если не учитывать интервалы времени порядка времени корреляции, другими словами, если можно считать случайную функцию х (i) марковским случайным процессом. Вывод уравнения, приведенный здесь, интересен тем, что в нем не используется понятие процесса Маркова. Общепринятый аппарат процессов Маркова заменен аппаратом обобщенных корреляционных функций, позволяющим проводить исследования в общем случае, переходящем при определенных условиях в случай процессов Маркова. Оценка членов уравнения (3.51) для s > 3 произведена Р. Л. Стратоно-вичем в работе [81 ], где показано, что если время корреляции процесса внешних возмущений мало по сравнению с временем переходного процесса в системе, то можно использовать обычное уравнение ФПК, параметры которого зависят от интегральных характеристик корреляционных функций внешних возмущений, так как при t > т ор важными являются не корреляционные функции, а их интегральные характеристики.  [c.164]

Для того чтобы определить конкретные значения Ямакс при задании различных температур Т, необходимо знать величину Ь, называемую постоянной Вина. Однако ее численное значение не может быть определено на основании написанных выше уравнений, так как сам вид функции f( lXT) остался неизвестным. Поэтому нахождение Ь может быть осуществлено экспериментальным путем на основании опытных данных по распределению спектральной объемной плотности равновесного излучения по длинам волн, полученному для какой-либо температуры. Теоретические исследования Планка, предпринятые па принципиально новой основе, позволили в дальнейшем найти конкретный вид функции f(v/T) и произвести независимое определение Ь. В соответствии с современными данными ее значение равно  [c.71]

Др. способом определения постоянной Планка в этом эксперименте может служить измерение угл. скорости Q вращения трубочки, при которой впервые появляются биения. Согласно теории, П = к/2птН )1п Я/а), а St 4 10 см в условиях аксперимонта эта величина o TaBvTHHa 0,2 рад -с".  [c.30]

Измерение высоких температур газовым термометром и внесение поправок по фиксированным точкам на шкале идеального газа становятся очень затруднительными. Выше 1063° Международная температурная шкала определена по формуле излучения Планка (глава 8) постоянная Сг в формуле имеет значение 1,438 см-град. Метод, с помощью которого получена температурная шкала в этой области, будет описан ниже, после рассмотрения законов излучения и их применения в оптической пирометрии. Однако ib большинстве опубликованных рабог дается температура по Международной шкале 1927 г. В ней температуры выше 1063° определены по формуле излучения Вина (удовлетворительное приближение к формуле Пл1анка установлено экспериментально в широком интервале температур) однако в этом случае постоянная Сг имеет значение 1,432 см- град. Значение Сг было выбрано для воспроизведения газовой шкалы с возможно большей точностью последние работы показали значительную ошибку ее определения, и в 1941 г. Бирж [49] установил наиболее вероятное значение 1,43848 см-град. Бирден и Вате [50] указали наиболее вероятное значение 1,43870 см-град. Таким образом, все международные температурные шкалы выше 1063°, применявшиеся до 1949 г., несколько отличаются от истинной газовой температурной шкалы. Фиксированные точки для температур от 1063° и выше приведены в таб1л. 6.  [c.94]

Это приводит к мысли, что с падающим пучком электронов можно связать определенную длину волны, причем она оказывается в приемлемом согласии с известной в волновой механике величиной himv — постоянной Планка, деленной на импульс электрона .  [c.98]

Повышение точности измерения координаты увеличивает неточность в измерении скорости, и наоборот. Эта связь количественно описывается соотношением неопределенностей (Гейзенберг). Если неточность определения координаты Дх, а Арх — неточность измерения х-составляющей импульса, то АхАрх h,. т. е. не может быть меньше постоянной Планка. Аналогично при одновременном измерении энергии и момента времени, когда она была излучена или поглощена, справедливо AtAE h. Поэтому в квантовой механике в отличие от классической сведения о частицах носят вероятностный характер.  [c.10]


Условимся в 68—70 пользоваться не постоянной Планка к, а связанной с ней константой Й = /г /2л. Будем, далее, в этих параграфах для краткости волновой вектор частицы к = р / Й называть импульсом. При этом функции = е , являющиеся в случае инфинитного движения собственными функциями оператора импульса — гЙУ, для финитного движения не будут таковыми, так как они не обращаются в нуль на стенках ящика. Физически это значит, что для частицы в ящике импульс не имеет определенного значения — при заданной энергии Е импульс может с равными вероятностями принимать значения у12тЕ. Мы, тем не менее, будем разлагать все функции координат по функциям  [c.360]

Любые частицы, двлжущиеся с определенной скоростью V (пропорциональной [энергии]и имеющие массу т, могут быть описаны как волны длиной К h — постоянная Планка) X = hlmv.  [c.158]

Любые частицы, движущиеся с определенной скоростью V (пропорциональной [энергии] / ) и имеющие массу т, могут быть описаны как волны длиной X (h — постоянная Планка) X=hlmv.  [c.158]

Еще в начале 20 века было установлено, что классическая мехарика Ньютона, развитая для макромира, описывет движение тел по вполне определенной траектории. Квантовая механика связана с поведением квантового физического поля, определяемого существованием универсальной постоянной Планка. Она названа квантом действия. Возникновение противоречия между классической и квантовой механикой были сняты И. Пригожиным [5] (см. раздел 2.3.). В соответствии с теорией необратимых процессов И. Пригожина, эволюция любой динамической системы включает переход устойчивость - неустойчивость - устойчивость . Если такие переходы отсутствуют, то система погибает , так как не способна к своему развитию [5]. Точки перехода являются критическими (точками бифуркаций), при достижении которых возникает высокая чувствительность системы флуктуациям в связи с нарушением ее симметрии. Это определяет неравновесный фазовый переход, в процессе которого происходит самоорганизация новой структуры, более адаптивной к нарушениям симметрии [5]. Как было показано в 1 главе, отношение критических управляющих параметров для предыдущей точки бифуркаций () к последующей (Xn+i ) является мерой адаптивности системы к нарушению симметрии, связанной с функцией F еамоподбного перехода от предыдущей к последующей точке бифуркаций  [c.85]

Последнее замечание, может быть, неясно выражает приведенное выше соображение о неправильности введения представления об энтропии ансамбля с неопределенной энергией. Однако буквальный смысл сказанного Лоренцом допускает ответ, заключающийся в том, что искомый ансамбль может быть определен функцией р, постоянной внутри области заданного неравновесного состояния и равной нулю вне этой области. В случае, когда заданное состояние имеет определенную энергию, этот ответ согласуется, как легко видеть, и с гиббсовой формулой S = — кг] и с обычным определением энтропии, 9 = Л1пДГ. Кроме того, Эренфесты [1, стр. 71] пишут, что при учете указаний Планка и Лоренца изменение величины S может характеризовать среднее по различным микросостояниям пзменение больцмановской энтропии. Не ясно, что, по мнению Эренфестов, должен дать учет указания Лоренца для названного ими свойства 2 наоборот, как можно показать, по существу это указание [12] означает возвращение к больцмановскому  [c.50]

Пусть геплофизические характеристики неоднородной пла-стинки— функции лишь координаты г. В этом случае Л и С —постоянные величины. Учитывая это, для определения интегральных характеристик Т к Т вместо (1.99) получаем такую систему уравнений  [c.36]


Смотреть страницы где упоминается термин Планка постоянная определение : [c.464]    [c.14]    [c.269]    [c.27]    [c.56]    [c.426]    [c.603]    [c.175]    [c.117]    [c.343]    [c.290]    [c.329]    [c.314]    [c.200]   
Сложный теплообмен (1976) -- [ c.4 ]



ПОИСК



Определение постоянных

Планка

Планка постоянная



© 2025 Mash-xxl.info Реклама на сайте