Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шкала международная

Единицами измерения температуры по термодинамической шкале являются градус Кельвина — °К и термодинамический градус Цельсия — °С (терм.) по международной практической температурной шкале — международный практический градус Цельсия — °С (межд. 1948) и международный практический градус Кельвина — °К (межд. 1948)  [c.12]


В настоящее время применяют две температурные шкалы Международная практическая стоградусная температурная шкала Цельсия, в которой за нуль (0 С) принята температура плавления льда, а за 100° С — температура кипения воды при нормальном атмосферном давлении (1,01325 бара) температура по этой шкале обозначается буквой t  [c.8]

В настоящее время существует две независимо определенных температурных шкалы. Международная шкала температур 1948 г. построена на шести реперных точках и на строго определенных способах интерполяции в каждом интервале температур наименования градуса — Градус Цельсия международный и Градус Кельвина международный .  [c.7]

Наиболее изученной и освоенной является область узаконенной температурной шкалы — Международной шкалы температур (МШТ), нижним пределом которой является точка кипения кислорода— 182,97°С (90,19° К), а верхним — точка затвердевания золота 1063° С. Температуры от —182,97 до +630° С принято называть областью средних температур.  [c.5]

В 1927 г. на VII Международной конференции по мерам и весам в качестве практической температурной шкалы была принята [1] Международная шкала температур °С(1п1.). Эта шкала была построена так, чтобы она возможно лучше совпадала с абсолютной шкалой. Международная шкала основывается на нескольких воспроизводимых температурах фазовых равновесий, которым приписаны определенные численные значения. Промежуточные температуры шкалы вычисляются по определенным формулам на основании показаний стандартных интерполяционных термометров, которые должны быть особым образом сконструированы и эталонированы по реперным точкам.  [c.270]

Температурная шкала международная 445 Тензометрический метод 199 Тепло, регенерация 182  [c.670]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


Историю термометрии с начала 18 столетия можно проследить по двум направлениям, родоначальниками которых были Фаренгейт и Амонтон. С одной стороны, разрабатываются все более точные практические шкалы, основанные на произвольных фиксированных точках, такие, как шкалы Фаренгейта, Цельсия и Реомюра, при одновременном создании все более совершенных практических термометров. С другой стороны, наблюдается параллельное развитие газовой термометрии и термодинамики. Первый путь привел (через ртутные термометры) к появлению платиновых термометров сопротивления, к работам Каллендара и наконец в конце 19 в. к платино-платинородиевой термопаре Шателье. В гл. 2 будет показано, что кульминационной точкой в практической термометрии явилось принятие Международной температурной шкалы 1927 г. (МТШ-27). Следуя по пути развития газовой термометрии, мы придем к работам Шарля, Дальтона, Гей-Люссака ш Реньо о свойствах газов, из которых следуют заключения о том, что все газы имеют почти одинаковый коэффициент объемного расширения. Это послужило ключом к последующему пониманию того, что газ может служить приближением к идеальному рабочему веществу для термометра и что можно создать  [c.32]

В гл. 1 излагалась эволюция понятия о температуре в течение более чем двух тысяч лет от исходных примитивных представлений до обобщенных концепций современной термодинамики и статистической механики. В предлагаемой главе рассказывается, каким образом на основе этих теоретических представлений появились температурные эталоны и температурные шкалы. Прежде всего ознакомимся в общих чертах с событиями, позволившими установить области, в которых были заключены международные соглашения.  [c.37]

Предшественники международной шкалы температур 1927 г.  [c.41]

Итак, в 1927 г. было достигнуто международное соглашение о практической температурной шкале. Поясним, почему была предложена и принята именно практическая шкала и почему практические температурные шкалы существуют до сих  [c.43]

Предложенное определение неединственности шкалы может относиться лишь к случаю, когда шкала воспроизводится на одной и той же аппаратуре для реализации реперных точек. Для международной шкалы, кото-  [c.45]

Рис. 2.2. Различие между международными температурными шкалами 1927 и 1943 гг. Рис. 2.2. Различие между <a href="/info/360719">международными температурными</a> шкалами 1927 и 1943 гг.
В 1975 г. в Национальной метрологической лаборатории (НМЛ, Австралия) было проведено международное сличение германиевых термометров сопротивления, имевшее целью найти расхождения нескольких магнитных температурных шкал и акустической шкалы НБЭ 2—20 К. Результаты сличения показали [5], что можно при единой процедуре градуировки магнитных термометров сблизить их показания по термодинамической шкале до уровня 1 мК. Вновь отметим, что магнитная термометрия не является первичной, поскольку она нуждается в этом интервале как минимум в четырех градуировочных точках (см. гл. 3).  [c.66]

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]

Параллельно с развитием пирометров с исчезающей нитью шло усовершенствование вольфрамовых ленточных ламп, предназначенных для поддержания и распространения оптической температурной шкалы. Эти лампы совершенствовались непрерывно, и сейчас они используются в поверочных лабораториях совместно с образцовыми фотоэлектрическими пирометрами. Международные сличения температурных шкал выполняются путем кругового обмена такими лампами между национальными термометрическими лабораториями. В настоящее время согласованность между радиационными температурными шкалами в области от 1000 до 1700 °С, установленными основными национальными термометрическими лабораториями, характеризуется погрешностью 0,1 °С.  [c.311]


Оптический пирометр с исчезающей нитью в свое время повсеместно использовался в эталонных лабораториях для реализации международной практической температурной шкалы. Он и сегодня остается широко используемым в науке и промышленности прибором для практической термометрии. По этой причине мы начнем этот раздел с описания его конструкции и работы.  [c.365]

Международные температурные шкалы даты и публикации  [c.411]

Первая, предварительная шкала была принята в 1927 г. С того времени Международная температурная шкала пересматривалась несколько раз. Ниже приведены даты утверждения удачных редакций и ссылки на французский текст, а также на английский текст в тех случаях, когда последний был подготовлен.  [c.411]

Международная температурная шкала 1948 г. МТШ-48.  [c.411]

Экспериментальные трудности, присущие измерениям термодинамической температуры, привели к принятию международной температурной шкалы. Международная практическая температурная шкала (МПТШ-68) основана на определенных воспроизводимых реперных точках (т. е. легко реализуемых состояний того или иного вещества, температура которых точно известна) и построена таким образом, что разница между термодинамической шкалой и МПТШ-68 меньше погрешности современных средств измерения температуры. (П р и-м е ч. р е д.)  [c.47]

Однако газовые термометры, позволяющие воспроизводить термодинамическую шкалу в ограниченном температурном интервале, неудобны при массовых измерениях температур, а в ряде случаев не обеспечивают требуемой точности измерения. Поэтому была создана условная шкала — международная практическая температурная шкала (МПТШ).  [c.248]

В соответствии с этим возникли две температурные шкалы— Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью 6 постоянных точек кипения кислорода, тройной точки воды, кипения воды, кипения серы, затвердевания серебра и затвердевания золота. Достоинством МПТШ является сравнительная простота экспериментов для ее воспроизведения. Однако она является лишь приближением к термодинамической шкале, и по мере совершенствования методики измерений термодинамической температуры значения постоянных точек уточняются, т. е. МПТШ не является чем-то постоянным и окончательно установленным. Поэтому в качестве основной единицы СИ выбрана единица термодинамической температуры 7, хотя ее воспроизведение сопряжено с большими экспериментальными трудностями.  [c.29]

МПТШ-68 [12] является повседневно используемой температурной шкалой. Международная практическая температура по Кельвину отличается от международной практической температуры /го Дельсию в соответствии с равенством (11.10)  [c.156]

В соответствии с этим возникли две температурные шкалы — Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью ряда постоянных точек кипения кислорода (—182,96°С), тройной точки воды ( + 0,01°С — в этой точке одновременно существуют и находятся в температурном равновесии все три фазы — твердая в виде льда, жидкая и газообразная в виде водяного пара), кипения воды (100°С), затвердевания цинка (419,58°С), затвердевания серебра (961,93°С) и затвердевания золота (1064,43°С).  [c.9]

При измерении теплофизических параметров одним из основных источников погрешности является погрешность измерения температуры. При оценке этой погрешности следует прежде всего учесть, что хотя положение о Международной системе единиц признает только одну температурную шкалу — термодинамическую температурную шкалу (ТТШ), на самом деле (из-за колоссальных технических трудностей) измерения производят, используя принципиально другую шкалу — Международную практическую температурную шкалу (МПТШ), которая является только некоторым приближением к термодинамической температурной шкале.  [c.12]

В соответствии с решением XIII Генеральной конференции по мерам и весам в октябре 1968 г. Международный комитет мер и весов принял новую шкалу—Международную практическую температурную шкалу 1968 г. (МПТШ-68) [159.  [c.194]

Телескопы пирометров 196, 200 Температурная шкала международная практическая (МПТШ) 5  [c.422]

Гальванический элемент принято (Международной конвенцией в Стокгольме в 1953 г.) записывать так, чтобы электрод сравнения всегда был слева, а за э. д. с. ячейки Е принимать разность потенциалов правого и левого электродов, т. е. = — Vn- Если левым электродом служит стандартный водородный электрод, (pH, = 1 атм, ан+ = 1), то э. д. с. элемента равналю величине и по знаку электродному потенциалу правого (исследуемого) электрода по водородной шкале, т. е.  [c.150]

В книге обобщены опыт работы ведущих термометрических лабораторий на протяжении последних двух десятилетий, позволивший создать Международную практическую температурную шкалу 1968 г., являвшуюся в момент ее установления наилучшим приближением к термодинамической температурной шкале, а также результаты последних исследований, выявивших недостатки и неточности МПТШ-68 и подготовивших основы для ее замены в недалеком будущем.  [c.5]

Существенный прогресс последних лет в эталонной термометрии связан с созданием герметичных ячеек с чистыми газами для воспроизведения температур их тройных точек. Осуществленное по разработанной ККТ программе международное сличение транспортируемых герметичных ячеек разных лабораторий, в том числе ВНИИФТРИ, показало, что их воспроизводимость по крайней мере в несколько раз лучше, чем на традиционной стационарной аппаратуре. Поэтому естественна современная тенденция положить в основу будущей МПТШ в качестве реперных температур только тройные точки в ее низкотемпературной части и точки затвердевания металлов при температурах выше 0° С. Отметим в этой связи превосходные метрологические характеристики точки галлия. В низкотемпературной части МПТШ эта программа, обеспечивающая повышение воспроизводимости будущей шкалы в несколько раз, может быть, без сомнения, реализована вплоть до 24 К, особенно при добавлении к традиционным тройным точкам МПТШ-68 тройной точки вблизи 150 К и точки плавления галлия.  [c.7]


Теперь можно проследить за развитием международных соглашений по термометрии от их истоков. Термометрия с самого начала была включена в сферу деятельности МБМВ, однако в основном в связи с необходимостью измерять температуру и тепловое расширение новых метровых линеек из сплава платины с иридием. Было решено, что к каждому национальному прототипу метра должны прилагаться два ртутных термометра, градуированных в МБМВ. С этой целью по заказу МБМВ парижским мастером Тоннело была изготовлена серия термометров. Для обеспечения высокой стабильности термометры были выполнены из тугоплавкого стекла. Постоянство этих термометров превзошло ожидания и оказалось, что с их помощью можно измерять температуру с воспроизводимостью в несколько тысячных градуса. Были изготовлены термометры трех типов. Термометр типа а имел шкалу от 0 до 100 °С с делениями через 0,1 °С, нанесенными через 5 мм. Термометр типа б имел шкалу до 50 °С, затем следовало расширение капилляра, после чего шкала с делениями через 7 мм возобновлялась на интервале от 95 до 100 °С. Термометр типа в имел шкалу с делениями через 8 мм до 39 °С, после чего следовало расширение, затем короткий участок шкалы вблизи 66 °С, вновь расширение и, наконец, участок шкалы от 97 ДО-100 °С. Создание таких термометров и необходимость их  [c.38]

В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

Неясно, почему БАРН не приняла предложения Каллендара, и прошло всего 10 лет до появления нового предложения о принятии международной шкалы. В 1911 г. Государственный физико-технический институт (ФТИ, Германия) официально обратился в МБМВ, Национальную физическую лабораторию (НФЛ) Англин и Бюро эталонов в Вашингтоне (с 1934 г. Национальное бюро эталонов, НБЭ) с предложением принять в качестве Международной практической шкалы термодинамическую шкалу температуры, а ее практическую реализацию осуществлять в соответствии с предложениями Каллендара 1899 г, НФЛ и Бюро эталонов согласились с этим предложе-  [c.41]

Уже в период утверждения МПТШ-48 начали выдвигаться новые предложения, которые привели позже к появлению МПТШ-68. В 1948 г. НБЭ внесло предложение в ККТ [17] продолжить Международную практическую шкалу вниз до точки кипения водорода ( 20 К), использовав эту точку в качестве новой реперной и применив для интерполяции так называемую 7-функцию  [c.50]

Результаты международного сличения [45],показанные на рис. 2.3, послужили основой низкотемпературной части МПТШ-68. Усредненная таблица W T) как функции от Т была рассчитана после пересчета каждой из четырех шкал к значению точки кипения кислорода 90,170 К и точки кипения водорода 20,267 К. Усредненные значения 117(7 ) были обработаны полиномом вида  [c.51]

Температурная зависимость давления насыщенных паров гелия представляет собой настолько удобную шкалу с хорошей воспроизводимостью, что ею пользовались задолго до появления международных соглашений в гелиевой области температур. Еще в 1924 г., до появления МТШ-27, Камерлинг-Оннес в Лейденском университете первым установил температурную шкалу по давлению паров " Не вплоть до критической точки 5,2 К. Шкала уточнялась в Лейдене в 1929, 1932 и 1938 гг. Международное соглашение о шкале по давлению паров Не было заключено в 1948 г., когда представители лаборатории Камерлинг-Оннеса (КОЛ), Королевской лаборатории Монда в Кембридже и нескольких криогенных лабораторий в США согласились принять усредненную шкалу [55]. Эта шкала была основана на термодинамической формуле Блини и Симона [8] для температур ниже 1,6 К, измерениях давлений паров от 1,6 до 4,3 К, выполненных Шмидтом и Кеезомом [51], и на пяти значениях давлений паров между 4,3 и 5,2 К, найденных Камерлинг-Оннесом и Вебером [37]. Построенная таким образом шкала официально не принималась, однако была широко известна и ею пользовались при  [c.68]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

Рис. 7.34. Результаты международных сличений температурных шкал четырех национальных лабораторий, проведенных в 1971 г., в температурной области от точки золота до 1700 С [56]. 1 — НБЭ нач. 2 — НБЭ конечн. 3 — НФЛ нач. 4 — НФЛ конечн. 5 —НС Л б —ПТБ. Рис. 7.34. Результаты международных сличений <a href="/info/3903">температурных шкал</a> четырех национальных лабораторий, проведенных в 1971 г., в температурной области от точки золота до 1700 С [56]. 1 — НБЭ нач. 2 — НБЭ конечн. 3 — НФЛ нач. 4 — НФЛ конечн. 5 —НС Л б —ПТБ.
Международная практическая шкала температур 1948 г. (исправленная редакция 1960 г.) МПТШ-48.  [c.411]

Международная практическая температурная шкала 1968 г. (редакция 1975 г.) МПТШ-68.  [c.411]


Смотреть страницы где упоминается термин Шкала международная : [c.292]    [c.43]    [c.49]    [c.50]    [c.56]    [c.66]    [c.411]    [c.411]   
Современная термодинамика (2002) -- [ c.0 ]



ПОИСК



Газовый термометр и международная практическая температурная шкала

Замечание Института метрологии СССР к проекту Положения о Международной температурной шкале

Замечания Национальной физической лаборатории (Англия) к проекту Положения о Международной температурной шкале

Интерполяция международной температурной шкалы

Международная практическая температурная шкала (МПТШ)

Международная практическая шкала

Международная практическая шкала температур

Международная практическая шкала температур (МПШТ)

Международная стоградусная температурная шкала

Международный код

Необходимость международной практической температурной шкалы

ОБЛАСТЬ МЕЖДУНАРОДНОЙ ШКАЛЫ ТЕМПЕРАТУР Международная шкала температур. Дж. Холл

Определение Международной практической температурной шкалы (МПТШ

Памятная записка Национального бюро стандартов (США) относительно 5 раздела четвертой части проекта Положения о Международной температурной шкале

Предшественники Международной шкалы температур

Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Таблица 9. Единицы термодинамической и Международной практической температурных шкал

Температура, абсолютная международные шкалы

Температурная шкала международная

Температурная шкала международная термодинамическая

Точки постоянные международной температурной шкалы

Точки — Удар о поверхность постоянные международной температурной шкалы

Формулы для пересчета градусов международной шкалы (С), Фаренгейта (F) и Реомюра

Формулы перевода градусов международной шкалы (С), Фаренгейта (F) и Реомюра

Шкала Реомюра температурная международная 2 Точки постоянные

Шкала международная стоградусная

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур международная

Шкала температурная международная практическая

Шкалы

Шкалы лабораторных термометров температурные международные



© 2025 Mash-xxl.info Реклама на сайте