Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв пограничного слоя ламинарного турбулентного

Отрезок жидкий 70 Отрыв пограничного слоя ламинарного 570 ----- турбулентного 683  [c.900]

Особенностью электромагнитной объемной силы является то, что в отличие от других объемных сил (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность и форму ударных волн, увеличивать критическое значение числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять пли ускорять поток электропроводной жидкости (или газа), вызвать деформацию профиля скорости п отрыв пограничного слоя.  [c.178]


Заметим, что все вышеприведенные расчеты выполнены без учета нарастания пограничного слоя на обтекаемых поверхностях. Влияние пограничного слоя может быть учтено введением поправки в контур тела на толщину вытеснения б. Для этого необходимо применить какой-либо численный или интегральный метод расчета ламинарного или турбулентного пограничного слоя (гл. VI) совместно с изложенным выше методо<м сквозного счета. При наличии интенсивных скачков уплотнения в сверхзвуковом потоке возможен отрыв пограничного слоя (гл. VI, 6). Отрыв пограничного слоя приводит к картине течения в канале, существенно отличающейся от идеального расчета. Оставаясь в рамках приведенной выше методики расчета, можно попытаться в первом приближении учесть влияние отрыва на характеристики течения. С этой целью предлагается использовать зависимости для отношения давлений в зоне отрыва дг/ро и для длины отрывной зоны Ь/б (гл. VI, 6). При расчете течения методом сквозного счета от сечения, где начинается отрывная зона, как и в случае струи, на границе задается давление, равное давлению в зоне отрыва. Заметим также, что при расчете струи, вытекающей из сопла во внешний поток, возможно учесть влияние спутного потока, решая соответствующую задачу о взаимодействии двух сверхзвуковых потоков на границе струи.  [c.293]

Так как лопатки колеблются в реальной, вязкой жидкости, то энергия колебаний рассеивается в неуста-новившемся пограничном слое. Эти колебания могут сместить точку перехода ламинарного слоя в турбулентный и даже вызывать периодический отрыв пограничного слоя.  [c.160]

В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]


С увеличением числа Re толщина пограничного слоя уменьшается, бугорки на стенке начинают частично выступать (рис. 6-10, 6) и турбулизировать поток. Таким образом, по сравнению с гладкой стенкой точка перехода ламинарного течения в пограничном слое в турбулентное появляется ближе к началу закругления отвода, а турбулентный отрыв происходит раньше, т. е. уменьшается как критическое число Re, при котором коэффициент сопротивления начинает падать, так и значение Re, при котором достигается минимальная величина  [c.264]

Re <3,5 10. В этом критическом диапазоне чисел Рейнольдса в пограничном слое начинается переход от ламинарного режима течения к турбулентному. Отрыв пограничного слоя возникает еще при ламинарном режиме течения, приблизительно в том же месте на лобовой стороне цилиндра, что и при меньших числах Re. За этим отрывом следуют смена режи.ма течения и второй, уже турбулентный ( пузырчатый ) отрыв на кормовой стороне цилиндра. Регулярность и определенность отрыва пограничного слоя меньше, чем при меньших и больших числах Рейнольдса. Донное давление резко повышается, а зона действия отрыва сужается ( =110- 120 ", рис. 10-3, г). В результате при Re 3=5-10 происходит указанное выше скачкообразное кризисное снижение лобового сопротивления цилиндра. Для шара такое кризисное сопротивление соответствует Re j=3 10  [c.472]

Первая осуществляется при числах Рейнольдса Ке 2 10 и характеризуется малым углом отрыва ф, равным примерно 82°, и большим сопротивлением цилиндра. При этом течение в пограничном слое остается ламинарным вплоть до точки отрыва и становится турбулентным ниже ее по потоку. При увеличении числа Рейнольдса Ке > > 2 10 точка перехода ламинарного пограничного слоя в турбулентный смещается вверх по потоку и по мере увеличения числа Рейнольдса проникает в область безотрывного обтекания. В этих условиях на поверхности цилиндра в области безотрывного обтекания наблюдается как ламинарный, так и турбулентный пограничный слой. Первый начинается от передней критической точки, на некотором расстоянии от нее, вниз по потоку переходит во второй, и отрыв происходит уже в области турбулентного пограничного слоя. При дальнейшем увеличении числа Рейнольдса наступает кризис обтекания — точка отрыва лри этом смещается вниз по потоку.  [c.214]

Другое многообещающее приспособление основано на создании принудительного подсоса либо через щели, либо через равномерно размещенные круглые отверстия на тех участках, где иначе произошел бы отрыв пограничного слоя. В этом случае пограничный слой отжимается к стенке, и мы опять получаем лучшее приближение к течению Жуковского. Если используются щели, то, исходя из теории Жуковского, нужно создать повышенное давление как раз впереди щелей ). Можно также попытаться использовать подсос для того, чтобы сохранить пограничный слой ламинарным, тем самым опять-таки уменьшая лобовое сопротивление. К сожалению, очень трудно, по-видимому, получить такое ламинарное течение. Даже летящие в воздухе насекомые могут вызвать турбулентность при обтекании самой гладкой поверхности крыла.  [c.65]

В этом разделе представлены теоретические и экспериментальные результаты для ламинарного пограничного слоя, образующегося в условиях установившегося двумерного течения в дозвуковом диапазоне скоростей. Отрыв несжимаемого ламинарного потока происходит при малых значениях положительного градиента давления. В теории пограничного слоя ламинарный пограничный слой более доступен для математического анализа и характеристики ламинарного течения могут быть предсказаны с большей степенью точности, чем для турбулентного пограничного слоя. Для турбулентного течения ввиду недостаточного понимания механизма турбулентности необходимы экспериментальные исследования, дополняющие теоретические предсказания.  [c.69]

НИИ достигает минимума, так что на участке АС оно падает, а на участке СЕ возрастает. Такие же изменения давления вдоль поверхности тела имеют место и в пограничном слое (так как поперек пограничного слоя давление почти не меняется). Следовательно, на участке СЕ жидкость в пограничном слое должна двигаться по направлению возрастания давления, что приводит к ее торможению. Наиболее сильно это торможение сказывается, конечно, на частицах жидкости, движущихся около самой поверхности цилиндра, т. е. обладающих наименьшей скоростью. В некоторой точке О вниз по потоку эти частицы останавливаются, а за точкой О даже двигаются вспять по сравнению с более удаленными от поверхности цилиндра и поэтому еще не заторможенными частицами. Образующееся у поверхности тела за точкой О возвратное течение оттесняет внешнее течение от поверхности цилиндра — происходит, как говорят, отрыв пограничного слоя от обтекаемой поверхности с образованием в жидкости поверхности раздела ОР. Если пограничный слой до отрыва был ламинарным, то после отрыва он ведет себя как свободная струя в затопленном пространстве и быстро становится турбулентным (при заметно меньших Не, чем не отрывавшийся пограничный слой, так как наличие стенки действует на течение стабилизирующим образом). Поверхность раздела ОРу являющаяся поверхностью тангенциального разрыва скорости, весьма неустойчива (см. ниже) и свертывается в один или несколько вихрей. В области РОЕ за поверхностью раздела около цилиндра образуется крупный вихрь второй такой же вихрь образуется в нижней части цилиндра. Эти вихри попеременно отрываются от поверхности цилиндра и уносятся вниз по течению на их месте образуются новые вихри.  [c.71]


Как мы увидим подробнее ниже, на положение точки отрыва пограничного слоя решающее влияние оказывает распределение давления во внешнем потоке. В области понижения давления, простирающейся от передней точки тела до того места, где давление имеет минимальное значение, пограничный слой ламинарный в начинающейся же затем области повышения давления пограничный слой обычно турбулентный. Необходимо отметить следующее весьма важное обстоятельство в общем случае отрыв пограничного слоя может быть предотвращен только при турбулентном течении в пограничном слое. Ниже будет показано, что ламинарный пограничный слой может преодолеть лишь чрезвычайно небольшое повышение давления и поэтому он обычно отрывается, даже если обтекаемое тело очень тонкое. В частности, такой отрыв происходит и в случае обтекания крыла при распределении давления, изображенном на рис. 1.13, причем опасность отрыва наиболее велика на подсасывающей (верхней) стороне профиля. При таком распределении давления гладкое безотрывное обтекание крыла, которое является необходимым условием возникновения подъемной] силы, возможно только при турбулентном пограничном слое.  [c.51]

Однако эти уравнения позволяют и без интегрирования обнаружить качественное влияние отсасывания на отрыв пограничного слоя и на переход в нем ламинарной формы течения в турбулентную.  [c.357]

В предыдущей главе мы рассмотрели турбулентный пограничный слой на плоской пластине при ее продольном обтекании без градиента давления в направлении течения. В настоящей главе мы рассмотрим турбулентный пограничный слой на стенке с понижением или повышением давления в направлении течения. Такое течение имеет особенно большое практическое значение в проблеме сопротивления крыла самолета и лопатки турбины, а также для исследования диффузора. Во всех этих случаях кроме определения сопротивления особый интерес представляет также выяснение вопроса, происходит или не происходит отрыв пограничного слоя, и если происходит, то в какой именно точке. Понижение давления и особенно повышение давления в направлении течения оказывают, так же как и при ламинарном течении, сильное влияние на развитие пограничного слоя.  [c.601]

При Ке<г<Ре(гкр=2-10 происходит отрыв ламинарного пограничного слоя, причем угол отрыва фот=80 85° (рис. 12-27). Если число Рейнольдса больше критического, происходит не отрыв пограничного слоя, а переход от ламинарного пограничного слоя к турбулентному. Турбулентный пограничный слой более устойчив по отношению к процессу торможения из-за нарастания давления во внешнем потоке, чем ламинарный, ибо он обладает большей кинетической энергией. Поэтому отрыв турбулентного пограничного слоя происходит при большем значении угла фот==140° (рис. 12-28).  [c.288]

Гидродинамические процессы, протекаюш ие при поперечном омывании цилиндра, включают в себя практически все классические задачи гидродинамики. Здесь и развитие ламинарного пограничного слоя в условиях отрицательного градиента давления (в лобовой части цилиндра), особенности течения в критических точках (<р=0, 180°), влияние внешней турбулентности на развитие и. характеристики пограничных слоев, переход ламинарного пограничного слоя в турбулентный, отрыв ламинарного и турбулентного пограничных слоев (при ср=80°, а также 135° — для сверхкритического обтекания), течение в зонах отрыва и циркуляционных зонах, возникновение возвратных пограничных слоев в задней части цилиндра и т. д. По указанным вопросам выполнено большое количество теоретических и экспериментальных работ [1]. Ниже приводятся основные расчетные зависимости для различных участков цилиндра.  [c.4]

Наличие значительной диссипации энергии во всем объеме турбулентного следа, а также образование поверхности раздела при отрыве пограничного слоя приводят к тому, что тела, при обтекании которых возникает отрыв пограничного слоя, оказывают большое сопротивление набегающему потоку. При этом сопротивление, вообще говоря, будет тем меньше, чем уже турбулентный след, т. е. чем дальше на поверхности тела расположена точка отрыва. При достаточно больших числах Рейнольдса, при которых, однако, пограничный слой до точки отрыва остается ламинарным, коэффициент сопротивления  [c.87]

При обтекании плоской пластинки, расположенной по потоку (угол атаки а = 0°), ламинарное течение в пограничном слое поддерживается на длине считая от передней кромки, определяемой числом Рейнольдса З-Ю —5-10 . После этого течение переходит в турбулентное. Точка перехода ламинарного пограничного слоя в турбулентный с увеличением числа Рейнольдса перемещается от задней кромки пластинки к передней. Сопротивление пластинки растет, и наибольшим оно становится, когда точка (зона) отрыва приближается к передней кромке. Важно отметить, что чем дольше сохраняется ламинарное течение вдоль пластинки, тем меньше ее сопротивление. Поэтому задача создания хорошо обтекаемых тел заключается в выборе такого профиля, у которого переход в турбулентное обтекание или отрыв вихрей происходит вблизи задней кромки тела.  [c.41]

Отсюда, между прочим, следует, что отрыв пограничного слоя может произойти только в области либо ламинарного, либо турбулентного движения, так как переход ламинарного слоя в турбулентный в диффузорной области происходит при значении параметра /, меньшем, чем его значение в точке отрыва.  [c.252]


Для больших дозвуковых скоростей характерны резкое сокращение диффузорной области и уменьшение градиентов давления в ней. При этих скоростях отрыв происходит в зоне расположения местных скачков уплотнения (рис. 5-46) независимо от того, каков режим течения в пограничном слое — ламинарный или турбулентный.  [c.292]

При изменении угла атаки а возможны две структуры обтекания локальный отрыв и отрыв потока с подветренной стороны конуса. Для первой характерно наличие лишь местного (локального) отрыва потока, вызванного щитком, а для второй - существование внешнего отрывного течения на всей подветренной стороне поверхности конуса, когда щиток целиком расположен в этой зоне отрыва. Вид структуры обтекания зависит не только от угла атаки, но и от режима течения в пограничном слое (ламинарный или турбулентный), числа набегающего потока, угла конуса, степени его затупления, геометрических размеров и местоположения щитка.  [c.172]

Остановимся на данных для наименьшего из задаваемых в экспериментах [1-3] значения е = 36° (фиг. 2 фиг, 6, точки /), наиболее близкого к рассмотренным в [4-6], Здесь во всех случаях имеется сверхзвуковое течение в возвратном потоке области отрыва с числом Маха М превышающим критические значения, при которых прямая ударная волна вызывает отрыв как ламинарного, так и турбулентного пограничных слоев [6, 8], Другими словами, в возвратном коническом течении при возрастании давления от до в условиях сверхзвукового потока должен реализоваться отрыв пограничного слоя, внутренний по отношению к основному - внешнему отрывному течению.  [c.75]

Отрыв ламинарного пограничного слоя, происходящий в точке максимального разрежения потока на профиле или вблизи нее при / б>500 с образованием короткой зоны отрыва, за которой сразу же расположено место перехода ламинарного пограничного слоя в турбулентный. При увеличении угла атаки короткая зона отрыва сокращается, а затем резко возрастает, порождая хорошо известное явление срыва с образованием зоны отрыва вблизи входной кромки лопатки, после которой поток уже не присоединяется больше к поверхности лопатки. Оказалось, что это явление, описанное в работе [7.55], служит причиной разрыва в характеристиках компрессора и приводит к явлению гистерезиса при обтекании изолированных профилей (хорошая иллюстрация срыва потока дана на рис. 6 работы [7.55] ). Наоборот, в работе [7.56] показано, что срыв на в.ход-ных кромках лопаток происходит скорее в результате отрыва турбулентного пограничного слоя, чем в результате резкого роста короткой зоны отрыва ламинарного потока.  [c.216]

Наиболее ярко выражены кризисные явления в случае обтекания тонкой пластинки и шара. При безотрывном обтекании пластинки кризисное явление состоит в резком возрастании ее сопротивления, обусловленном переходом ламинарного пограничного слоя в турбулентный. При обтекании шара кризис обтекания носит другой характер. Вследствие нарастания на его поверхности пограничного слоя и торможения, обусловленного противодавлением, происходит отрыв этого слоя. Начало такого отрыва совпадает с той точкой поверхности, где Тст = 0, т. е.  [c.344]

Следовательно, отрыв пограничного слоя происходит тем ниже по течению, чем больше напряжение трения на стенке, поскольку в этом случае частицы жидкости пройдут больший путь в пограничном слое вдоль поверхности тела, прежде чем Тст станет равным нулю. Таким образом, в случае ламинарного пограничного слоя отрыв произойдет значительно выше по потоку, чем в случае смешанного пограничного слоя, когда на кормовой части шара имеется турбулентный пограничный слой.  [c.344]

Схема отрыва потока при обтекании шара показана на рис. 7.1.И, а соответствующее распределение коэффициентов давления р— = р—р )1д —на рис. 7.1.12. Чем ниже по потоку происходит отрыв пограничного слоя, тем ближе по своему характеру обтекание шара потоком реальной (вязкой) жидкости к обтеканию его идеальной средой. Поэтому, несмотря на то, что сопротивление трения при переходе от ламинарного пограничного слоя к турбулентному возрастает, кризис обтекания приводит к уменьшению полной величины сопротивления шара вследствие уменьшения области пониженного давления в кормовой части (см. рис. 7.1.12).  [c.344]

Верхний предел интегрирования зависит от характера обтекания тела. Если ламинарный пограничный слой распространяется на всю поверхность, то 1 — продольный размер тела вдоль оси х если имеет место отрыв, то определяет точку отрыва если в пределах поверхности имеет место переход к турбулентному режиму, то определяют по зависимости для турбулентного слоя.  [c.333]

Положение точки отрыва турбулентного пограничного слоя определяется опытными значениями формпараметра = —2н—6, причем значения f,, при которых в конкретных случаях происходит отрыв, зависят от степени диффузорности течения. Однако во всех случаях отрыв турбулентного слоя происходит в точках, расположенных ниже по течению, чем точки отрыва ламинарного слоя, которому соответствует = —0,0681.  [c.415]

Необходимым условием отрыва является положительный градиент давления. Следовательно, в общем случае отрыв потока происходит под воздействием такого градиента, а также ламинарных или турбулентных процессов. Если оба эти фактора отсутствуют, то отрыва не происходит. Например, поток не отрывается от плоской пластинки, для которой характерными являются постоянство давления во всех сечениях пограничного слоя и, следовательно, равенство нулю продольного градиента давления = 0).  [c.97]

Следует заметить, что визуальные наблюдения (рис. 211) подтверждают описанную картину улучшения обтекания шара в указанной области рей-нольдсовых чисел. Явление это, получившее еще наименование кризиса обтекания, объясняется изменением расположения на шаре линии перехода ламинарного пограничного слоя в турбулентный. При Re, меньших 1,5-10 , на поверхности шара происходит отрыв ламинарного пограничного слоя, переходящего в турбулентный вне шара в оторвавшемся слое.  [c.540]

Все изложенное относится к теории ламинарного пограничного слоя, которая находится во вполне удовлетворительном согласии с экспериментом и качественно подтверждается также имеющимися немногочисленными точными решениями уравнений Навье — Стокса. Однако на самом деле при повышении скоростей пограничный слой переходит в турбулентное состояние, что меняет весь режим течения (реальные струи, как правило, всегда турбулентны). Первоначально с этим явлением столкнулись в связи с экспериментальным исследованием коэффициента лобового сопротивления шара (Дж. Костанци, Л. Прандтль, Г. Эйфель). Оказалось, что при достижении чисел Рейнольдса порядка 10 дальнейшее увеличение числа Рейнольдса приводит к резкому падению коэффициента сопротивления шара примерно в два раза. Этому удивительному явлению дал объяснение Л. Прандтль Он показал, что при достижении указанных чисел Рейнольдса отрыв пограничного слоя вызывает его турбулизацию и последующее присоединение, что задерживает в целом отрыв потока от обтекаемого тела и тем самым резко снижает сопротивление ( кризис обтекания и сопротивления.)  [c.298]

На рис. 55, который относится к немного большему значению числа Маха, мы видим завершение отрыва. Но аналогии с другим случаем отрыва потока мы называем это явление волновым срывом потока. Рис. 55 относится к случаю, где пограничный слой ламинарный. Если пограничный слой турбулентный, то оп оказывает до некоторой степени большее сопротивление отрыву. Это взаимосвязанное явление известно как взаимодействие ударной волны и иограпичиого слоя. Увеличение давления, вызванное ударной волной, может вызвать отрыв пограничного слоя, который в свою очередь влияет па образование ударной волны. Впервые эту задачу исследовали Акерет, Фельдман и Ротт [16] в Цюрихе и Липман [17] в Калифорнийском технологическом институте.  [c.132]


Таким образом, для вычисления сопротивления трения требуется знание градиента скорости на стенке. Этот градиент может быть определен только путем интегрирования дифференциальных уравнений пограничного слоя. Если отрыв пограничного слоя возникает до задней кромки обтекаемого тела, то вычисление по формуле (7.20) следует произвести только до точки отрыва. Далее, если ламинарный пограничный слой в каком-либо месте переходит в турбулентный, то интегрирование в формуле (7.20) следует выполнить до точки перехода. Позади этого места сопротивление трения подсчитывается иначе, а именно в соответствии с законами турбулентного течения, о чем будет сказано подробно ниже, в главе XXII.  [c.132]

Отрыв пограничного слоя вносит качественное изменение в обтекание тела потоком жидкости, которое не ограничивается лишь появлением лобового сопротивления, а сопровождается образованием вихрей, срывающихся с цилиндра и уносящи.хся потоком жидкости. Они рассеиваются далеко позади цилиндра. Явление вихреобразования происходит так по любой нормали к поверхности цилиндра скорость жидкости постепенно возрастает от нулевой, которую имеет слой, непосредственно прилегающий к стенке, до скорости потока за пределами пограничного слоя, толщина которого мала. На рис. 3.2, а показано распределение скоростей при ламинарном течении в пограничном слое, а на рис. 3.2,6—при турбулентном течении, которое характеризуется более быстрым нарастанием скоростей у пластинки.  [c.47]

Из рисунка видно, что величина Сх изменяется в широких пределах при малых числах Рейнольдса, когда происходит отрыв ламинарного потока Са Л 0,48, а при больших значениях этого числа (в случае турбулентного отрыва ) xi5 iO,l. В сравнительно малом диапазоне чисел Рейнольдса (на рис. 7.1.13 Re и R g) происходит резкое снижение коэффициента сопротивления, обусловленное переходом ламинарного пограничного слоя в турбулентный и сдвигом по этой причине его точки отрыва вниз по потоку. Приближенно считают, что такое снижение происходит при критическом числе Рейнольдса Re, за которое принимают его значение Re—VooDjvo , соответствующее коэффициенту лобового сопротивления шара Сх = 0,3 (см. рис. 7.1.13).  [c.345]

Рассмотрим также теплообмен на профиле турбинной лопатки при наличии зон ламинарного, переходного и турбулентного течения. Расчет выполняется при использовании уравнений (1.127) с дополнительными условиями по переходу (1.128). Расчетные и опытные значения числа Нуссельта на турбинном профиле показаны на рис. 7.16 для двух чисел Рейнольдса (Rej = рыас/м., 2 — скорость на выходе из решетки с — хорда лопатки). Результаты приведены для выпуклой стороны профиля. При меньшем числе Re (Rea = 1,84.10 ) пограничный слой остается ламинарным вплоть до точки отрыва (при х1с = 0,86), расчетное местоположение которой согласуется с опытным (в точке отрыва пограничного слоя трение на стенке становится равным нулю). При большем числе Re (Re = 6,75.10 ) отрыв  [c.265]

Рассмотрим процесс поперечного обтекания одиночной цилиндрической трубы потоком жидкости (рис. 17.7). Плавное обтекание цилиндра возможно только при малых скоростях потока — при Re < 5. При всех значениях Re > 5 наблюдается отрыв потока от стенки трубы и образование в кормовой части двух симметричных вихрей, которые с увеличением скорости потока вытягиваются по течению, удаляясь от трубы. Ламинарный пограничный слой, образующийся на лобовой части по обе стороны от точки О, ирн 5 < Re < 2-10 отрывается от поверхности трубы в точке а, характеризующейся углом ф 82° (рис. 17.7, а). Увеличение толщины пограничного слоя от минимального в точке О до максимального в точке отрыва а приводит к увеличению термического сопротивления и уменьшению коэффициента теплоотдачи а. Коэффициент а имеет максн.мальное значение в точке О, минимальное — в точке отрыва а. В кор.мовой части значения а вновь увеличиваются за счет разрушения пограничного слоя и образования вихрей, турбулизирующих поток. При значительных числах Рейнольдса (Re > 2-10 ) ламинарный пограничный слой переходит в турбулентный (точка Ь на рис. 17.7, б) и место отрыва от трубь перемещается по потоку (точка а). Это приводит к улучшению обтекания цилиндра (ср 120") и уменьшению вихревой зоны.  [c.191]


Смотреть страницы где упоминается термин Отрыв пограничного слоя ламинарного турбулентного : [c.101]    [c.187]    [c.33]    [c.93]    [c.192]    [c.224]    [c.10]    [c.213]    [c.685]    [c.86]    [c.30]    [c.348]   
Механика жидкости и газа (1978) -- [ c.540 ]

Механика жидкости и газа Издание3 (1970) -- [ c.683 ]



ПОИСК



Ламинарное те—иве

Ламинарные пограничные слои

Отрыв

Отрыв в пограничном слое (см. Пограничный слой, отрыв)

Отрыв ламинарный

Отрыв пограничного слоя

Отрыв пограничного слоя ламинарного

Отрыв турбулентный

Пограничный ламинарный и турбулентны

Пограничный слой ламинарный

Пограничный слой ламинарный турбулентный

Пограничный слой турбулентный

Пограничный турбулентный

Слой ламинарный

Слой турбулентный

Турбулентность (см. Пограничный

Турбулентные пограничные слои



© 2025 Mash-xxl.info Реклама на сайте