Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс деформации нагружения

Процессы деформации, нагружения и другие 125  [c.125]

ПРОЦЕССЫ ДЕФОРМАЦИИ, НАГРУЖЕНИЯ И ДРУГИЕ  [c.125]

Если задан произвольный процесс сложного нагружения во времени t в точке деформируемого тела, характеризуемый компонентами 3ij(t), то конец вектора деформации в пространстве описывает определенную кривую  [c.87]

Поэтому в основе современной концепции устойчивости конструкций и их элементов, в основе методологии исследования устойчивости лежит исследование процессов их нагружения и деформирования. Процесс нагружения упругой или упругопластической системы становится неустойчивым, если сколь угодно малому продолжению этого процесса соответствует катастрофическое развитие перемещений и деформаций.  [c.319]


Рис. 81. Критические размеры зон с предельной плотностью деформации у вершины трещины на микро (то )- и макро(Гс )-уровнях. Образование системы опережающих микротрещин и фрактального фронта генеральной трещины в процессе дальнейшего нагружения материала Рис. 81. <a href="/info/13622">Критические размеры</a> зон с предельной плотностью деформации у вершины трещины на микро (то )- и макро(Гс )-уровнях. <a href="/info/574373">Образование системы</a> опережающих микротрещин и фрактального фронта генеральной трещины в процессе дальнейшего нагружения материала
Например, если при нагружении образца его длина изменилась от 1о до /к, то весь процесс деформации можно разбить на отрезки. Сначала образец удлинился до / , затем до I2, h и т. д., тогда суммарное удлинение  [c.118]

На рис. 1.1 показаны два положения стержня положение 1 соответствует ненагруженному состоянию (естественному), положение 2 —нагруженному состоянию. Под действием медленно нарастающих сил Р и моментов Т (рассматривается статика) стерл<ень, деформируясь, переходит из состояния 1 в состояние 2. Из рис. 1.1 следует, что упругие перемещения могут быть настолько большими, что форма осевой линии нагруженного стержня может как угодно сильно отличаться от первоначальной. Внешние силы в процессе деформации стержня могут также сильно изменяться по направлению (на рис. 1.1 направления векторов Рг и Тг в момент приложения к стержню показаны пунктиром).  [c.15]

Для решения нелинейных задач статики гибких стержней необходимо знать поведение внешних нагрузок в процессе деформации стержня, а также необходимо учитывать изменение краевых условий, например перемещение шарнира (рис. 1.2). Конечное состояние гибкого стержня будет различным, если, например, нагружать стержень в одном случае мертвой- силой ( мертвой называется нагрузка, сохраняющая при деформации системы свое направление), а в другом — следящей, т. е. силой, которая в процессе деформации стержня сохраняет свое направление по отношению к стержню, например образует неизменные углы с подвижными осями. В более общем случае нагружения на стержень кроме сосредоточенных сил и моментов могут действовать и распределенные силы и моменты.  [c.15]

Допустим, что при простом (или близком к нему) нагружении в теле было создано напряженно-деформированное состояние, которое определяется компонентами тензоров напряжений а, . . . и деформаций г, у у. ... Для сравнения найдем напряжения al,. .. и деформации ej, у1у,. . ., которые возникают в том же теле при соблюдении закона Гука в процессе всего нагружения.  [c.309]


Теперь мы можем вернуться к той простейшей теории пластичности, с рассмотрения которой мы начали 16.1. При изучении границ применимости деформационной теории и при анализе простейшей модели мы встретились с такой ситуацией, когда начальная поверхность нагружения была гладкой, а последующие поверхности становятся сингулярными, коническая точка появляется в точке нагружения и следует за нею по пути нагружения. Сейчас речь будет идти об особенностях другого рода. Начальная поверхность нагружения может состоять из частей нескольких гладких поверхностей, образующих при пересечении ребра. Простейший пример, рассмотренный в 16.1, ато призма Сен-Венана, ограниченная шестью гранями. Эта призма в процессе деформации может расширяться с сохранением подобия в этом случае следует говорить об изотропном упрочнении, а может переноситься параллельно без изменения размеров в случае трансляционного упрочнения. При выводе формул  [c.554]

Циклов. Другим способом испытания для определений характеристик малоциклового сопротивления является нагружение с постоянной амплитудой полной деформации, рассматриваемое как жесткое , так как. образование пластической деформации ограничено задаваемой полной деформацией. Такие условия нагружения возникают около зон концентрации напряжения, около дефектов, при неравномерном распределении температуры по сечениям. Эти условия обеспечивают также стационарность процесса деформации в смысле отсутствия одностороннего их накопления.  [c.79]

Как правило, эффективный коэффициент концентрации меньше теоретического. Это объясняется относительным уменьшением пика напряжений в зоне наибольшего влияния концентратора за счет пластических деформаций, которые развиваются в слоях металла, расположенных под основанием надреза. Определенную роль играет упрочнение материала в процессе циклического нагружения.  [c.202]

В условиях циклического охлаждения труб при водной очистке в них возникают знакопеременные термические напряжения. Процесс термоциклического нагружения можно в простейшем случае изобразить показанной на рис. 5.28 схемой [168, 187—189]. В первом цикле охлаждения металл деформируется на величину е= =бу +бп (линия О —а —с), где еу и е обозначают соответственно упругую и пластическую деформацию при первом цикле охлаждения. При прекращении охлаждения температура металла восстанавливается до начальной величины и на него воздействует сжимающее напряжение. При этом происходит пластическая деформация бп" (линия d — e). В условиях повторных циклов процесс протекает по замкнутому контуру b— —d—e—b, который по существу представляет собой циклически повторяющуюся упруго-пластическую деформацию материала. Суммарная упругопластическая деформация и размах напряжений Ла по упрощенной петле гистерезиса выражаются как  [c.236]

Эволюция дислокационной структуры в процессе деформации монокристаллов с ОЦК-решеткой проанализирована в работе [9]. Отмечено, что для ОЦК тугоплавких металлов наблюдается соответствие-между типом кривой деформации и дислокационной структурой, созданной в процессе нагружения. Так, низкотемпературное параболическое упрочнение определяется однородным распределением винтовых.  [c.111]

Поскольку дислокационные структуры различаются по эффекту деформационного упрочнения [9, 277], можно ожидать, что последовательное их формирование в процессе деформации должно приводить к изменению хода кривой нагружения. Действительно, практически во всех способах обработки диаграмм нагружения, описанных выше, наблюдаются отклонения и перегибы на перестроенных кривых, что привело к появлению более сложных методов обработки кривых упрочнения типа дубль- [318] и т. д.  [c.136]

Таким образом, электронно-микроскопическое исследование показало [330], что обнаруженный путем обработки кривых нагружения в координатах 5 — е / стадийный характер кривых упрочнения обусловлен сменой дислокационных структур сплава в процессе деформации по схеме лес клубки ячейки. Смена структурных состояний наблюдается в узких интервалах деформаций (е — и приводит к изменению величины коэффициента параболического упрочнения К.  [c.140]


При повышении температуры в локальном объеме предел текучести в нем уменьшается, в результате чего материал начинает быстро деформироваться за время до 1(Г с. Всплески деформации сопровождаются резким снижением напряжений, процесс деформации прекращается, температура понижается до исходной, напряжения возрастают и акты прерывистой текучести могут повторяться в соседних микрообъемах. В процессе статического нагружения каждый последующий всплеск деформации происходит при больших напряжениях, чем предыдущий, и по другим плоскостям (рис. 68). Число всплесков деформации зависит от типа сплава, его структуры и прочности. Чем прочнее материал, тем меньшее число актов прерывистой текучести появляется до разрушения образца.  [c.112]

В процессе циклического нагружения в зависимости от величины амплитуды напряжений или деформаций и степени асимметрии цикла происходят структурные и дислокационные изменения в поверхностных слоях образца и во внутренних объемах металла. С ростом количества циклов нагружения происходит не только взаимодействие дислокаций с примесями, концентрация дислокаций на границах и других структурных барьерах, возникновение ступеней сдвига на поверхности, но и резкое возрастание плотности дислокаций, достигающей в конце концов критической величины.  [c.186]

Формирование систем скольжения с высокой плотностью дислокаций, сопровождающих формирование усталостных бороздок, было продемонстрировано методами просвечивающей электронной микроскопии [70, 82, 135]. Системы скольжения располагаются под углом 45° к поверхности излома. Профиль и ширина блоков полос скольжения, которые наблюдали на поверхности образца, подобны профилю и шагу усталостных бороздок [82]. Этот факт был положен в основу многих разработанных моделей формирования усталостных бороздок [70, 82, 133, 134, 136-142]. Рассмотрены были оба полуцикла нагружения материала, в которых реализуются два разных процесса (1) пластическое затупление вершины трещины, и (2) разрушение материала. Оба процесса соответствуют восходящей ветви нагрузки и приводят к формированию каждой усталостной бороздки в каждом цикле приложения нагрузки. В полуцикле разгрузки происходит подготовка материала перед вершиной трещины к последующей реализации указанных выше двух процессов деформации и разрушения.  [c.164]

Используя вышеприведенные обоснования того, что некоторые профили усталостных бороздок характерны для финальной части стабильного роста трещины, а также другие признаки процессов деформации разрушения материала с разной интенсивностью, можно провести предварительную селекцию профилей бороздок (механизмов разрушения материала) и отнести к начальной или конечной фазе развития трещины на II стадии. Это вполне обосновано в том случае, когда точного профиля бороздки нет, а есть только морщинистая поверхность [135, 142], отвечающая процессу затупления вершины трещины. Вместе с тем, хотя пластическое затупление типично для нагружения материала при положительной асимметрии цикла, оно не наблюдается в слз ае циклов с высокой отрицательной асимметрией, когда минимальное напряжение цикла отрицательно по знаку и является сжимающим [140]. Переход от пульсирующего цикла нагружения к асимметричному циклу со сжимающим напряжением не меняет треугольной формы профиля бороздки с гладкой поверхностью, но сама величина шага возрастает при указанном переходе. Причем наиболее значительное возрастание имеет именно та часть профиля бороздки, которая обращена к предыдущей бороздке, сформированной при пульсирующем цикле нагружения. Такая ситуация при формировании усталостных бороздок может быть объяснена только в том случае, если принять во внимание возможность формирования части профиля усталостных бороздок на нисходящей ветви нагрузки (в полу-цикле разгрузки материала).  [c.165]

Анализ сигналов АЭ выполнен по двум параметрам — изменению напряжения цикла и изменению числа циклов нагружения. Исследованы вероятностные характеристики появления событий и амплитуд сигналов АЭ. Рассматривались поверхности этих функций и строились их картограммы по 25 сечениям, соответствующим 25 уровням сигналов (рис. 3,29). Наиболее плотное число событий соответствует трем областям на полученных картограммах. Первая область соответствует моменту непосредственно начала раскрытия берегов трещины, вторая расположена около максимума напряжения цикла, и третья область примыкает к участку закрытия трещины. Появление первой и третьей областей объясняется процессом формирования скосов от пластической деформации у поверхности образца [143, 144]. Процесс деформации и разрушения соответствует преимущественно скольжению и поворотам при совместном раскрытии по тину П1 + I.  [c.170]

На рис. 1.10 представлены распределения полей пластических деформаций и напряжений в диске в процессе его нагружения (т=4,8 мкс, Иг(г=йо =0,24 мм, евв1г=л =Ыг/Ло = 3 %, где Ur—перемещение по оси г еее — окружная деформация). Видно, что распределение НДС по сечению диска неоднородно и имеет ряд особенностей. Так, если в центральной части диска распределение всех компонент деформации достаточно однородно по высоте диска, то при выходе на поверхность диска со стороны внутреннего отверстия радиальная е и осевая  [c.40]

При воздействии внешних сил, температурного расширения и др. в деформируемом твердом теле возникает напряженно-деформированное состояние (НДС). Кроме напряжений и деформаций оно характеризуется такими физическими параметрами, как температура, интенсивность электромагнитного поля, доза радиоактивного облучения и т. д. Со временем эти параметры могут изменяться. В связи с этим вводится понятие процесса нагружения. Напряженно-деформированное состояние в точках тела в конечном счете определяется не только заданными значениями параметров внешнего воздействия, но и историей процесса нагружения. В главе описываются законы связи между напряжениями, деформациями и другими параметрами, характеризующими механическое состояние тела с учетом истории процесса его нагружения в случае произвольного неупругого поведения. Дается математическая постановка краевых задач МДТТ.  [c.78]


Заметим, что о существованци решения, как правило, можно говорить в том смысле, что заданному процессу изменения внешних возде11ствий отвечает некоторый процесс изменения деформа-ци11 во всех точках тела, при этом одннм и тем же конечным значениям внешних воздействий могут соответствовать совершенно различные напряженно-деформированные состояния тела. Различие в решении может объясняться как различием в процессах нагружения, так и разветвлением процесса деформации начиная с некоторого момента нагружения. Следовательно, уравнение (5.286) может иметь единственное решение только в исключительных случаях.  [c.280]

В процессах ударноволнового нагружения (во всяком случае, на начальном этане) при давлениях порядка 1 — 10 ГПа играют роль кинетические, или релаксационные эффекты перехода упругих деформаций в пластические, которые иногда называют эффектами запаздывания текучести. Процессы перехода упругих деформаций в пластические и обратно, вообще говоря, могут рассматриваться как фазовые переходы 2-го рода, когда в точке равновесия фаз (в данном случае в точке Гюгоиио па ударной адиабате) меняется сжимаемость или модуль сопротивления сдвигу, но пе величины внутренней энергии и плотности, как в случае фазовых переходов 1-го рода. Модели, учитывающие релаксацию во времени упругих деформации в пластические (в отличие от упругопластических схем типа (1.10.19)), должны включать дополнительные независимые параметры и дифференциальное уравнение кинетики релаксации упругих деформаций. Это  [c.148]

Более крупные трещпны обнаруживаются визуально. На рнс. 1.9.2 изображена диаграмма деформирования гипотетического линейно упругого материала, в котором по мере растяжения воэникают трещины. Появление трещин эквивалентно уменьшению эффективной площади поперечного сечения, а так как при вычислении напряжения нагрузка делится на общую площадь, диаграмма при нагружении ничем не отличается от диаграммы пластичности. Разница обнаруживается лишь при разгрузке, которая следует закону упругости, но как бы с уменьшенным модулем, прямая разгрузки возвращается в начало координат, если все трещины полностью смыкаются. Но в процессе деформации может происходить выкрашивание перемычек между трещинами, что препятствует их полному смыканию после разгрузки, поэтому деформация исчезает не полностью и разгрузка следует некоторой кривой, которая схематически показана штриховой линией. Примерно так выглядит действительная кривая разгрузки для многих пластмасс.  [c.37]

Зависимость между этими двумя величинами в процессе нагружения изобрал<ается прямой линией ОА на рис. 130, б, а работа, совершенная в процессе деформации, определяется площадью 4 a dydz) z dx) треугольника ОАВ. Обозначая эту работу через dV, имеем  [c.253]

Образование и вид малоциклового разрушения связаны с процессами деформации. Накопление односторонней деформации у циклически анизотропных металлов приводит при мягком нагружении к разрушению с образованием шейки без предварительного образования трещины. Такое разрушение, называемое квазиста-тическим, возникает, когда односторонне накопленная  [c.79]

Для идеально-пластического тела недопустимость соотношений (3.1) следует из того факта, что многообразие напряжений соответствующих процессам пластического нагружения, и пространство остаточных пластических деформаций имеют, вообще говоря, разные размерности. Наибольшее возможное при Т = onst и = рД число измерений многообразия точек поверхности текучести 2р, которой принадлежат все точки изотермических процессов пластического нагружения, равно пяти, а соответствующей области пространства eg — шести.  [c.429]

Размер дислокационной ячеистой структуры (см. рис. 4.19,6) уменьшается в процессе деформации каждого прохода, однако к началу уже следующего из-за возврата практически полностью восстанавливает свой размер, т. е. дислокационная структура как бы циркулирует в сравнительно узком интервале размеров вдоль кривой р изменения размера ячеек от деформации, которая была найдена для сплава МЧВП в работе [3551. В результате при таком режиме ковки упрочнение достигается в основном только за счет изменения поперечного размера зерна, поэтому и каждая последующая кривая нагружения (рис. 4.19, а) лежит выше.  [c.186]

При температурах выше О.ЗГпл (800 °С) в молибдене наблюдается внутризеренная ползучесть. Результаты испытания на ползучесть в интервале температур 0,5—0,8Гпл (1000—2000 °С) и скоростях нагружения до 10 С- показывают, что в таком случае преобладающим механизмом разрушения является межзеренное разрушение. При температурах выше 0,8Гпл (2000 °С) в молибдене наблюдаются рост зерна и другие структурные изменения, происходящие в процессе деформации. Механизм разрушения — разрыв.  [c.213]

В реальных условиях циклическому нагружению может предшествовать статическое с достаточно большой величиной пластической деформации (например, холодная гибка деталей в процессе изготовления конструкций). Поэтому представляло интерес рассмотреть влияние предварительной статической деформации на характер изменения картины микронеоднородной деформации в процессе циклического нагружения. Учитывая наличие резко выраженной микронеоднородной деформации, сопоставление особенностей про текания ее при статических и циклических нагружениях было выполнено на одних и тех же образцах. Для этого образец на первой стадии подвергали циклическому пульсирующему нагружению (5 = 0) с получением остаточной деформации 3 %, после чего тот же образец статически растягивали. У второго образца программа нагружения изменялась на первом этапе образец подвергали статиче-  [c.31]

Характеристический размер масштаба протекания пластической деформации определяется (ограничен сверху) объемом, рднрродно заполненным дислокациями. При нагружении возникают мезодефекты — конфигурации неоднородных дисг локаций. В ансамбле дислокаций в силу неоднородности реализуемого процесса деформации по мере удаления от вершины усталостной трещины и вдоль фронта трещины, а также в силу различий, связанных с разными ветвями нагружения и разгрузки, возникают ротационные моды. Частичные дисклинации фрагментируют зону на ряд разориентированных областей с увеличением размера фрагмента вплоть до 2,10 м [57, 58, 65]. Этр представление о процессе накопления дефектов в пределах зоны пластической деформации подтверждается статистическим анализом размеров ячеек дислокационной структуры [78]. Результаты нализа распределения размеров ячеек дислокационной структуры по размерам после выполненных испытаний сплава Fe-Si с постоянной деформаг цией показали, что средний размер ячейки близок  [c.148]

Формирование сферических частиц в лока.пь-ных зонах материала является высоко энергоемким процессом. Увеличение площади поверхности вдоль фронта трещины, подверженной процессу формирования сферических частиц, будет в бо.,ть-шей степени способствовать поглощению энергии цикла нагружения на задержку развития процесса разрушения материала. Это синергетический принцип самоорганизованного перехода к более энергоемким процессам деформации и разрушения материала по мере нарастания интенсивности  [c.159]


Выявленная последовательность сигналов АЭ отражает известную последовательность процессов деформации и разрушения материала, которые реализуются в вершине распространяющейся усталостной трещины [91, 143, 144]. Они связаны с формированием скосов от пластической деформации у поверхности образца и созданием мезотун-нелей вдоль фронта трещины с последующим разрушением перемычек между ними (см. рис. 3.19). Развитие скосов от пластической деформации происходит преимущественно путем сдвиговой деформации, и раскрытие части фронта трещины в области у поверхности образца определяется модами III + I. Это наиболее простой способ поглощения и релаксации энергии деформации и разрушения. Этот процесс наиболее активен в момент раскрытия и закрытия берегов трещины, поэтому на этих этапах восходящей и нисходящей ветвей нагрузки сигналы от ротаций объемом материала незаметны. Разрушение перемычек между мезотуннелями при регулярном одноосном нагружении также связано р модами III+I, что, в свою рчередь, соответствует локализованным процессам деформации ц разрушения, р которых ротационные эффекты едва заметны.  [c.173]


Смотреть страницы где упоминается термин Процесс деформации нагружения : [c.128]    [c.39]    [c.21]    [c.211]    [c.434]    [c.134]    [c.169]   
Механика сплошных сред (2000) -- [ c.127 ]



ПОИСК



Зависимость сопротивления деформации от истории процесса нагружения

Процесс .нагружения (см. деформация активная)

Процесс нагружения

Процессы деформации, нагружения и другие



© 2025 Mash-xxl.info Реклама на сайте