Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод узлов

Сеточно-характеристический метод. В классической схеме метода узлы характеристической сетки определяют в процессе численного решения как точки пересечения характеристик. Основное преимуш ество этой схемы состоит в том, что при использовании такой сетки максимально учитывается структура течения, в частности области распространения слабых разрывов. Так, в случае применения классического метода характеристик удобно рассчитывать волны разрежения, выделять линии слабых разрывов, определять области возникновения висячих ударных волн.  [c.122]


Найденные изложенным методом узлы, и, следовательно, коэффициенты приближения (3.4), зависят от оператора Н и рассматриваемого интервала времени. Это позволяет получить хорошее приближение уже при т = 4 ч- 7.  [c.292]

Стандартным подходом к решению подобных газодинамических задач является метод характеристик [44]. Однако этот подход применяется лишь в работах [43, 45], в то время как остальные исследователи предпочитают так называемый метод узлов. Подробное описание и сравнение различных подходов выходят за рамки нашей книги, но мы сделаем некоторые замечания и опишем физические основы анализа. Будут указаны соответствующие источники, особенно те, в которых представлены программы численного расчета на ЭВМ. В готовящейся к печати работе [46] предполагается дать полное описание методов комбинированного анализа, которые пока не представлены в открытой литературе.  [c.336]

Стирлинга, но совершенно очевидно, что в открытой литературе можно найти все необходимые методы исследования, и тем не менее, если не считать отдельных попыток, все это богатство теоретических знаний совершенно не использовалось. Теоретические исследования, методы решения и численного расчета можно найти в уже упоминавшихся работах [40—42], а также в публикациях [44, 45, 47—53]. Метод узлов имеет ту же теоретическую основу, но совершенно иную методику решения. Вопрос о применимости этой методики вызывает сомнения, но окончательный выбор нельзя сделать до тех пор, пока не будет  [c.337]

В указанных выше работах, а аналогичные сведения с использованием метода узлов представлены в работах [20, 39, 55, 56], где приводится и полное описание программ численного расчета. Рекомендуется также изучить работы [57, 58, 60].  [c.338]

В большинстве указанных работ при анализе газодинамических систем не рассматривается движение поршня, но в монографиях [41, 45] помимо других факторов учитывается дви-л<ение поршня, так что на эти работы следует обратить особое внимание. При использовании столь строгого математического подхода еще требуется найти корреляционные соотношения для теплообмена и аэродинамического сопротивления, получить аналитические выражения для различных граничных условий, описать математически реальное движение поршня и т. д. К полученным решениям нужно относиться таким же образом и с той же осторожностью, как и к решениям, найденным методами раздельного анализа. Однако можно полностью рассчитать значения давления и температуры во всех точках в течение всего рабочего цикла, что позволяет более глубоко постичь механизмы, участвующие в рабочем процессе. Деление системы на множество небольших газовых молей можно считать предельным случаем аналогичного деления, применяемого в методике Шмидта [45]. Метод узлов с достаточным основанием можно считать обобщением этой методики.  [c.342]


Из двух описанных методов, несомненно, предпочтительнее с аналитической точки зрения метод характеристик, но он несколько сложнее и требует значительно более высокой квалификации исследователя. Метод узлов подробнее разработан применительно к двигателю Стирлинга и вполне приемлем при низких и средних скоростях, но при высоких скоростях необходимо учитывать распространение волн давления конечной амплитуды, что пока не позволяет применить метод узлов в последнем случае. Кроме того, из-за предположения о постоянстве параметров внутри ячеек невозможно проследить за траекториями отдельных частиц, а это необходимо для понимания взаимосвязи между различными механизмами течения н теплообмена.  [c.343]

Мы уделили большое внимание различным системам координат, с тем чтобы исследователи, приступающие к этой новой для них теме, имели представление об аналитических средствах, многие из которых не применялись к двигателю Стирлинга. Следует ознакомиться со всеми указанными источниками, в частности с работами (20, 41, 45, 51, 55, 74]. Настоятельно рекомендуем монографии [41, 51], а также превосходную работу Финкельштейна [74], в которой были заложены основы метода узлов.  [c.347]

Уровень термодинамического анализа в большой степени зависит от склонности и опыта исследователя, но вряд ли будет использован достаточно строгий и точный метод узлов, поскольку для применения такого метода требуются данные, которые должен дать алгоритм. Разумеется, на основании известных результатов можно предварительно рассчитать конструкцию нагревателя, а метод узлов использовать как итерационный способ усовершенствования конструкции. Однако такой подход требует больших затрат и позволяет получить данные лишь о термодинамических характеристиках нагревателя. Для получения информации о напряжениях в материале, сроке службы и стоимости нагревателя требуется модификация этого анализа. Расчет с использованием соотношений для полностью идеального цикла также недостаточен, поскольку требуется более подробная информация об изменении давления и массового расхода в цикле.  [c.357]

Агрегатно-узловой метод ремонта наиболее прогрессивный, внедряется в практику в настоящее время. При этом методе узлы и агрегаты, требующие ремонта, заменяют новыми или заранее отремонтированными.  [c.322]

Узловой метод ремонта. При более высоком уровне организации производства применяется узловой метод ремонта. При этом методе узлы агрегата, требующие ремонта, снимают и заменяют запасными, заранее отремонтированными, приобретенными или изготовленными. Узловой метод ремонта сокращает время простоя оборудования, применяется для оборудования, состоящего из конструктивно обособленных узлов. Наиболее целесообразно его применять для следующих видов оборудования одноименных моделей агрегатов, имеющихся на предприятии в большем количестве, агрегатов, являющихся основными для данного производства, кранового оборудования независимо от его количества.  [c.9]

При ремонте автоматизированного оборудования особую роль приобретают узловой и последовательно-узловой методы. При последовательно-узловом методе узлы станка ремонтируют последовательно.  [c.179]

При этом методе узлы агрегата, требующие ремонта, снимают и заменяют запасными, заранее отремонтированными, приобретенными или изготовленными.  [c.68]

В автоматических линиях при работе в 2 смены обычно принимается продолжительность ремонтного цикла в 6 лет. За это время в зависимости от назначения и сложности оборудования проводится один капитальный ремонт, 1—2 средних, 6—8 малых и 18—27 осмотров. При среднем и капитальном ремонте оборудования линий широко применяют узловой и последовательно-узловой методы ремонта, которые обеспечивают восстановление оборудования в минимальное время и при наименьших затратах. При узловом методе узлы оборудования, требующие ремонта, снимают и заменяют запасными (заранее отремонтированными, изготовленными  [c.249]

При поточно-узловом методе узлы и комплекты, заранее отремонтированные и собранные, подаются к соответствующим позициям потока. Ремонт на потоке заменяется сборкой комплектов и постановкой на вагон целых узлов.  [c.341]

Существуют две разновидности метода характеристик так называемый метод волн (или метод ячеек) и метод узлов характеристической сетки. В методе волн несколько упрощается арифметика вычислений при выполнении их вручную, и он более нагляден физически, в особенности при наличии в задаче границ с постоянным давлением. Однако метод волн требует перехода в плоскость годографа скорости, приводит к вычислительным трудностям на границе, являющейся линией симметрии, и не может быть обобщен на осесимметричные течения (поскольку основывается не на строгой математической теории характеристик). Поэтому ему следует предпочесть метод узлов характеристической сетки.  [c.447]


В рассматриваемом нами простейшем (явном) методе решения задачи временной интервал Дт нужно выбирать таким, чтобы коэффициент при исходной температуре рассчитываемого узла был положительным. Это условие в данном случае будет выполняться, если  [c.116]

К корпусным относят детали, обеспечивающие взаимное расположение деталей узла и воспринимающие основные силы, действующие в машине. Корпусные детали обычно имеют довольно сложную форму, поэтому их получают методом литья (в большинстве случаев) или методом сварки (при единичном и мелкосерийном производстве). Для изготовления корпусных деталей широко используют чугун, сталь, а при ограничении массы машин — легкие сплавы (например, силумин).  [c.233]

Решение размерной цепи методом полной взаимозаменяемости осуществляется в том случае, когда взаимозаменяемые детали, размеры которых составляют размерную цепь, без какого-либо подбора обеспечивают достижение заданной точности замыкающих звеньев у всех размерных цепей, т. е. обеспечивают равенство двух частей уравнений размерных цепей. Этот способ является наиболее прогрессивным и в то же время простым и экономичным для технологического процесса сборки машин. Он дает возможность организовать процесс сборки по принципу потока, изготовлять запасные детали и запасные сборочные единицы (узлы, агрегаты) на основе кооперирования специализированных заводов, выпускающих отдельные детали и сборочные единицы тех или других машин. Этот метод применяется в массовом и крупносерийном производстве.  [c.79]

Второй метод сборки заключается в том, что машина собирается одной бригадой рабочих из отдельных деталей и узлов, предварительно собранных другими рабочими вне стенда общей сборки, не входящими в состав бригады, производящей общую сборку машины. Таким образом, здесь имеет место частичная дифференциация сборочного процесса. Этот метод является более производительным, так как детали предварительно собирают в сборочные единицы, благодаря чему машина меньше простаивает на стенде общей сборки. Здесь может быть проведена специализация рабочих, собирающих механизмы, и тем сокращено время на сборку сборочных единиц кроме того, квалификация рабочих может быть использована лучше как на сборке сборочных единиц, так и на сборке всей машины. Этот метод применяется при стационарной сборке в серийном производстве.  [c.487]

Все технологические расчеты, относящиеся к неподвижной, а также и к подвижной поточной сборке узлов и агрегатов, производятся аналогично расчетам общей сборки в елой машины, осуществляемой таким же методом.  [c.488]

Пример применения метода регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате (рис, 3.55). Задаются исходные данные (размеры и материалы детали, режущий инструмент, глубина резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования) требуется найти режим обработки (sj, п,), удовлетворяющий условиям по точности обработки шероховатости поверхности  [c.136]

Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]

Таким образом, предположение о снижении е/ с увеличением hjs за счет свободных колебаний сварного соединения при импульсном нагружении подтверждается выполненными расчетными исследованиями, базирующимися на разработанном методе решения динамической упругопластической задачи. Очевидно, что изложенные закономерности будут справедливы и для других сварных соединений, где усиление оказывает влияние на характер колебательного процесса рассматриваемого узла,  [c.48]


В связи с изложенным настоящая глава будет посвящена разработке методов определения ОСН в сварных толстолистовых конструкциях с многопроходными швами, а также исследованию долговечности сварных узлов на стадии развития усталостной трещины. Решение поставленной задачи опирается на разработанные методы расчета НДС при термопластическом деформировании материала, базирующиеся на МКЭ, а также на методы анализа параметров механики разрушения и модель развития усталостной трещины.  [c.269]

В случае расчета ОСН в сварных узлах при наличии криволинейных границ наиболее удобен МКЭ, что обусловлено отсутствием недостатков, присущих МКР (основные из которых трудность аппроксимации криволинейной области прямоугольной сеткой и равномерность шага сетки), иначе очень усложняется расчетная схема и теряется основное достоинство метода — простота.  [c.278]

Результаты расчетов, выполненных с использованием полученных соотношений, сравнивались с осредненными по толщине значениями напряжений при решении МКЭ соответствующей термодеформационной задачи. Сопоставление этих результатов (рис. 5.14,6) продемонстрировало хорошее их соответствие. Таким образом, предложенный метод по точности определения реактивных напряжений не уступает одному из наиболее надежных численных методов решения подобных задач, основанных на МКЭ, но при этом позволяет значительно сократить время и трудоемкость выполнения расчетной оценки реактивных напряжений в сварных узлах указанного выше типа.  [c.303]

Предложено несколько вариантов метода узлов, начало которым было положено в серии статей Финкельштейна и обзор которых проведен Урпелли [68]. Хотя они и различаются в деталях, основной подход остается таким же, как описанный выше. Следовательно, всем этим методам присущ один н тот же недостаток — очень мелкий шаг интегрирования по времени, вследствие чего физические законы могут произвольным (и неизвестным) образом искажаться, поскольку информация может передаваться от узла к узлу быстрее, чем это физически возможно в рабочем теле, а это происходит в том случае, когда шаг по времени меньше значения, удовлетворяющего критерию Куранта. Поэтому в работах [63, 64] были высказаны сомнения относительно корректности некоторых методов. В последнее время были предприняты попытки исправить указанный недостаток в распространении информации [65].  [c.343]

Последнее замечание следует сделать относительно выбора координат. В предложенных к настоящему времени методах комбинированного анализа используется система координат Эйлера x,t), поскольку она применяется при рассмотрении контрольного объема. Можно применять и другие системы координат, а именно лагранжевы и псевдолагранжевы. Если сравнивать с этими двумя системами, то использование эй.теровых координат приводит к более громоздким расчетам при анализе одномерного нестационарного течения [66]. Как будет показано ниже, метод характеристик и метод узлов на самом деле связывают подходы Эйлера и Лагранжа, и связывающее соотношение можно найти, исходя из понятия поля параметров. Однако в данный момент мы определим различные координаты для одномерной системы. В рамках подхода Эйлера рассматривается постоянный объем в пространстве, и параметры рабочего тела, мгновенно занимающего этот объем, определяются таким образом, что нет необходимости следить за отдельными частицами газа. При использовании подхода Лагранжа рассматриваются отдельные частицы и прослеживаются их траектории в поле течения. В одномерной системе рассматривается слой газа (а не отдельные частицы) и переменная л заменяется другим параметром (скажем, а для данного слоя газа), который равен величине х при = 0, и, следовательно, значение а будет изменяться от частицы (слоя) к частице (слою). Псевдолагран-жева координата т данного слоя газа обозначает массу газа, содержащегося в объеме между этим слоем и исходным слоем при = о, и поэтому каждый слой имеет свое значение т, ко-  [c.344]

Математические модели различных элементов пневмоцепей, приведенных на рис. 3.44, составляются по методу узлов. Пропускная способность дросселя, заменяющем трубопровод, обозначена на схемах г- — (/ , Д ). Уравнение расходов для проточного звена составляют лишь для одного узла, в котором ( т / с(1) - представляет собой массовый расход воздуха через первое пнев-мосопретивление (с(т / ск) - через второе пневмосопротивление  [c.323]

Для решения численными методами уравнение теплопроводности заменяется системой алгебраических уравнений. Для этого рассматриваемое тело разбивается на несколько объемов ДК конечных размеров и каждому объему присваивается номер. В пределах объема ЛК обычно в его центре выбирается узловая точка или узел. Теплоемкость всего вещества, находящегося в объеме AV ( = pAV), считается сосредоточенной в узловой точке. Узловые точки соединяются друг с другом теплопроводящими стержнями с термическим сопротивлением теплопроводности стенки толщиной, равной расстоянию между узлами, и площадью, равной площади контакта объемов. Крайние узлы в зависи-  [c.115]

Документы, предназначенные для разового использования в производстве и не подлежащие длительному хранению (документы макетов, стендов для лабораторных испытаний и др.), допускается выполнять в виде эскизных конструкторских документов. Наименование и способ изготовления эскизных документов те же, что и для всех документов, а отличаются они лишь тем, что наименование изделий, обозначение документов и порядок внесения изменений может быть упрощен. В перечне документов, установленном ГОСТ 2.102—68, отсутствуют эскизы и бланк-чертежи, предусмотренные ГОСТ 5291—60, так как эскизы, в том понимании и тем более бланк-чертежи, являющиеся заготовками чертежей, на которых впоследствии проставляются недостающие размеры и другие данные, не являются документами. Применение бланк-чертежей при разработке конструкторской документации является одним из методов ускорения выпуска рабочих чертежей. Кроме того, из предусмотренных ГОСТ 5295— 60 документов исключены ведомость заимствованных деталей, узлов и групп, ведомость нормализованных изделий и частей изделий и список документов. Это сделано для того, чтобы сократить объем конструкторской документации и ликвидировать дублирование данных в различных документах. Например, нормализованные изделия, если они поставляются в готовом виде, должны быть отражены в ведомости покупных изделий. Если их будут изготавливать на предприятии—изготовителе основного изделия, в комплект конструкторской документации дсшжны входить  [c.159]

При методе интерполирования условие приближения зак.люча-ется в том, что заменяющая исследуемая функция Fm(x) совпадает с заданной функцией F(х) в интервале Xq, Хт] в k точках, называемых узлами интериолирования (рис. 2.31). Аналитически это записывается в виде системы k уравнений, полученных нрнраштва-пием нулю отклонения А в й узлах нитернолпровання  [c.78]

Решая систему (2.35), определяют коэффициенты pi, по которым затем находят параметры г мехаггизма. Недостатком метода Интерпол ироваиия является получение довольно больших отклонений А между узлами интерполирования при произвольном выборе Х. Б результате удачного выбора узлов Xj или их смещения при повторном решении можно достичь меньших отклонений А. Более гоч-ные результаты получаются при использовании методов квадратического или наилучшсго приближения.  [c.79]

С целью охвата небольших автопредприятий, где невозможно организовать работу специализированных постов или групп, в рамках автотранспортных объединений целесообразно создавать передвижные лаборатории (посты) контроля токсичности автомобилей. Такая лаборатория имеет в своем составе приборы контроля токсичности и дымности ОГ в соответствии с действующими стандартами, набор диагностической аппаратуры для двигателей, учебнометодические материалы. В функции передвижной лаборатории входит проведение всего комплекса работ контрольно-диагностического поста крупных АТП—контроль токсичности и дымности, диагностирование двигателей и автомобилей, поэлементный контроль и восстановление параметров отдельных узлов двигателя. Кроме того, работа передвижного поста должна сопровождаться демонстрацией эффективности методов контроля и регулирования двигателей по токсичности и топливной экономичности, обучением прогрессивным приемам эксплуатации автомобилей.  [c.102]


В шестор книге пособия Системы автоматизированного проектирования излагаются методы автоматизированного конструирования узлов, деталей машин и устройств даются основные сведения о САПР технологических процессов на примере машиностронтельн111х отраслей описываются особенности конструирования изделий и разработки технологических процессов в комплексных автоматизированных системах проектирования м изготовления, а также для условий гибких производственных систем.  [c.4]

Учитывая изложенное, можно заключить, что экспериментальные методы измерения ОСН не могут дать полного представления о распределении напряжений по всему объему конструкции. Применение их ограничено случаями определения напряжений по какому-либо сечению узла (при этом известны только компоненты тензора напряжений, действующие в плоскости, перпендикулярной этому сечению), по поверхности изделия, а также оценкой средних по толщине соединения напряжений. Оценка локальных напряжений в высокоградиентных полях возможна как интегральная. Для детального исследования областей с высокоградиентньши полями напряжений целесообразно применять расчетные методы, а экспериментальные использовать для оценки корректности и применимости принятых в расчетах допущений.  [c.271]


Смотреть страницы где упоминается термин Метод узлов : [c.342]    [c.461]    [c.330]    [c.274]    [c.250]    [c.79]    [c.80]    [c.56]    [c.414]    [c.87]   
Двигатели Стирлинга (1986) -- [ c.337 , c.342 , c.343 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте