Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимическая коррозия солевая

Коррозионностойкими (нержавеющими) называют стали, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой,  [c.262]

Электрокоррозия представляет собой электрохимическую коррозию под действием внешнего источника постоянного тока, т. е. так называемых блуждающих токов, возникаюш,их вблизи электрифицированных железнодорожных линий, трамвайных путей, силовых шин и цехов электролиза, доков для ремонта судов, оснащенных электрооборудованием и электросварочными аппаратами, и пр. Источники блуждающих токов возникают при плохой изоляции рельсов от земли или силовых шин от пола, при наличии солевых электролитных мостов в электролизных цехах, образующихся при центральном подводе или отводе электролита, а также из-за плохого контакта между отдельными участками рельсового пути.  [c.32]


В зависимости от химического состава и структуры металла, природы агрессивной среды, условий ее воздействия электрохимическую коррозию подразделяют на солевую, щелочную, кислотную, атмосферную, почвенную, контактную, биологическую, коррозию под напряжением и пр.  [c.6]

I. Коррозионностойкие (нержавеющие), обладающие стойкостью против электрохимической коррозии атмосферной, почвенной, щелочной, кислотной, солевой, в морской воде и др. Примерное назначение коррозионно-стойкой стали приведено ниже.  [c.28]

К электрохимической коррозии относится щелочная коррозия, которая получила свое наименование вследствие образования концентрированных растворов едкого натрия в местах перегрева метал-та и глубокого упаривания котловой воды. Этот вид коррозии возникает, когда едкий натрий составляет значительную долю в солевом составе котловой воды. В этом случае под слоем отложений концентрация едкого натрия может достигать больше 50%. Концентрированные растворы едкого натрия при высоких температурах вызывают растворение защитной пленки металла. Незащищенный металл иод слоем отложений продолжает корродировать до тех пор, пока утонение стенки не приводит к образованию сквозного отверстия — свища.  [c.102]

Электрохимическую коррозию в зависимости от условий протекания и свойств среды подразделяют на кислотную, щелочную, солевую (соответственно в растворах кислот, щелочей, солей, в расплавленных солях, на воздухе или в газе) почвенную под воздействием блуждающих токов (например, у подземных сооружений) контактную (при контакте разнородных металлов) биокоррозию (под воздействием продуктов, выделенных микроорганизмами) и т. п.  [c.360]

I г р у п п а коррозионностойкие (нержавеющие) стали, стойкие к атмосферной, почвенной, щелочной, кислотной, солевой и другим видам электрохимической коррозии  [c.95]

Подземная коррозия металлов является разновидностью электрохимической коррозии, протекающей в почвах и грунтах. Подземной коррозии подвергаются нефтяные, газовые и водные трубопроводы, а также сваи, кабели и другие подземные сооружения. Коррозионная активность почвы и грунта определяется их пористостью, влажностью, солевым составом и кислотностью, присутствием микроорганизмов.  [c.37]

При остановах турбин до полного охлаждения всегда заботятся о том, чтобы устранить источники попадания пара в турбину, ликвидируя просачивание пара через запорную арматуру, поступление из паропроводов отборов и пр. Конденсация пара в охлаждаемой турбине приводит к появлению на поверхности металла пленок влаги и протеканию тех или иных процессов электрохимической коррозии. Когда в турбинах есть солевые отложения, в местах их скопления могут получаться концентрированные растворы электролитов. Скорость электрохимической коррозии в таких растворах заметно увеличивается. На рис. 3.2 показан диск турбины со следами стояночной коррозии в виде многочисленных язвин разных размеров.  [c.89]


Коррозионностойкой (нержавеющей) называют сталь, обладающую высоким сопротивлением электрохимической коррозии (атмосферной, почвенной, кислотной, щелочной, солевой, морской и др.).  [c.9]

Высоколегированные стали и сплавы (ГОСТ 5632—61) делятся на три основные группы коррозионностойкие (нержавеющие), жаростойкие и жаропрочные. В книге рассматриваются только нержавеющие стали аустенитного класса, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.).  [c.5]

Коррозионностойкие (нержавеющие) стали обладают стойкостью против электрохимической коррозии (кислотной, щелочной, солевой, атмосферной, почвенной, морской и др.). Жаростойкие (окалиностойкие) стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии, обладают стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550° С. Жаропрочные стали и сплавы обладают достаточной окалиностойкостью и определенное время могут работать в нагруженном состоянии при высоких температурах. Основной характеристикой качества этих сталей и сплавов является химический состав.  [c.270]

По механизму процесса различают два типа коррозии химическую коррозию, происходящую в сухих газах и в неэлектролитах (нефть и ее производные), и электрохимическую коррозию, происходящую в электролитах, в том числе и в воде. В зависимости от того, в какой среде протекает электрохимическая коррозия, ее называют кислотной, щелочной, солевой, морской и т. д.  [c.5]

Во-первых, необходимо отметить, что электрохимическая коррозия в солевых растворах, в которых присутствует кислород, может относительно быстро разрушать металл даже при обычных температурах, в то время как при простом окислении образуется пленка, препятствующая разрушению металла. Это происходит, потому что электрохимический механизм коррозии, при котором анодные и катодные участки пространственно разделены, обеспечивает превращение металлов в окислы, гидроокиси и основные соли без образования защитной пленки. Необходимо подчеркнуть, что разрушение часто начинается из-за дефектов в поверхностных слоях металла. Возникающие коррозионные поражения очень сильно зависят также и от внешних условий. В обычной жесткой воде на стали, например, образуются часто плотно прилегающие пленки, обладающие частично защитными свойствами. В дистиллированной воде, содержащей кислород, защитные пленки обычно тонки и несовершенны, что часто способствует возникновению язвенной коррозии, как и на цинке.  [c.85]

Действие на железо капель различных солевых растворов. В главе IV было разъяснено, почему электрохимическая коррозия опасна в тех случаях, когда и анодные, и катодные продукты легко растворимы. На том же основании можно утверждать, что коррозия будет слабее, если один из продуктов плохо растворим. Справедливость этого утверждения была доказана в ранней работе по изучению коррозии в каплях, помещенных на горизонтальную поверхность шлифованной стали. Несмотря на простой характер этой работы, ее результаты в достаточной мере важны, и мы приведем краткую сводку.  [c.128]

I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.  [c.333]

Стойкость сталей и сплавов этого класса против электрохимической, химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др. определяется в первую очередь их составом.  [c.497]

Коррозия металлов в расплавленных солях, как правило, имеет электрохимическую природу. Между поверхностью металла и солевой средой происходит ионный обмен  [c.359]

Рассмотрены следующие аспекты применения методики вращающегося дискового электрода с кольцом 1) качественный и количественный анализ продуктов коррозии, в том числе и нестабильных промежуточных продуктов коррозии, и контроль за их превращениями в растворе с целью изучения путей и стадийности процесса 2) исследование механизма коррозии сплавов 3) исследование механизма коррозии металлов, покрытых пассивирующими окисными или солевыми слоями, с целью выяснения механизма пассивирующего действия этих слоев. Показана эффективность метода в условиях, когда на электроде параллельно протекают какие-либо другие (химические или электрохимические) процессы.  [c.216]


Коррозия Металлов в ионных (силикатных, окисных, солевых) расплавах имеет электрохимическую природу и, следовательно, определяется окислительно-восстановительными процессами. Вме- Te с тем именно с окислительно-восстановительными свойствами связана способность неметаллических расплавов формировать покрытия с надлежащими адгезионными характеристиками.  [c.25]

Неорганические оксидные и фосфатные покрытия находят широкое применение в различных отраслях промышленности. Такое распространение объясняется их ценными свойствами. В зависимости от условий химической или электрохимической обработки на поверхности металла могут быть получены окисные или солевые пленки различной толщины и свойств. Тонкие пленки пассивируют металл и несколько повышают его стойкость против коррозии. С увеличением толщины и уменьшением пористости возрастает защитная способность пленок.  [c.3]

К группе конверсионных относят неметаллические неорганические покрытия, которые не наносятся извне на поверхность деталей, а формируются на ней в результате конверсии (превращений) при взаимодействии металла с рабочим раствором, так что ионы металла входят в структуру покрытия. Основой их являются оксидные или солевые, чаще всего фосфатные пленки, которые образуются на металле в процессе его электрохимической или химической обработки. Наиболее широкое распространение получили оксидные покрытия алюминия и его сплавов. Это связано с тем, что по разнообразию своего функционального применения, определяемого влиянием на механические, диэлектрические, физико-химические свойства металла основы, такие покрытия почти не имеют равных в гальванотехнике. Полученные оксидные пленки надежно защищают металл от коррозии, повышают твердость и износостойкость поверхности, создают электро- и теплоизоляционный слой, легко подвергаются адсорбционному окрашиванию органическими красителями и электрохимическому окрашиванию с применением переменного тока, служат грунтом под лакокрасочные покрытия и промежуточным адгезионным слоем под металлические покрытия. Эти характеристики относятся к оксидным покрытиям, полученным электрохимической, прежде всего анодной обработкой металла. Хотя выполнение химического оксидирования проще, не нуждается в специальном оборудовании и источниках тока, малая толщина получаемых покрытий, их низкие механические и диэлектрические характеристики существенно ограничивают область его применения.  [c.228]

Группу коррозионностойких (нержавеющих) составляют стали, обладаюш,ие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.). К их числу относятся высокохромистые (12—30% Сг), хромоникелевые (17—207о Сг, 8—11% Ni, 0,12—0,14% С), хромомарганцовые и другие стали.  [c.18]

Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основе по ГОСТ 5632—72 подразделяются на три группы I — коррозионностойкие (нержавеющие) стали, стойкие против электрохимической коррозии (атмосферной, щелочной, кислотной, солевой и др.) II — жаростойкие (окалиностойкие) стали и сплавы, стойкие против химического разрушения поверхности в газовых средах при температурах выше 550° С, работающие в ненагруженном или слабонагружен-ном состоянии III — жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностойкостью.  [c.47]

Примечание. Коррозионностойкими (перж веющими) сталями (сплавами) называются материалы, обладающие стойкостью против электрохимической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой, морской и др.)  [c.331]

В процессе химической или электрохимической коррозии на поверхности металла образуются оксидные, гидроксидные или солевые пленки. Удаление этих пленок может происходить, например, при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды. Такой вид коррозии называется фреттинг-коррозией. Она возникает в узлах с малоподвплсными соединениями, например в различных болтовых стыках, заклепочных соединениях, на участках прессовой посадки валов, в шлицевых сое-  [c.96]

По механизму процесса (различают два типа коррозии химическую коррозию, происходящую в сухих газах (называется также — газовой) ив неэлектролитах (нефть и ее производные), и электрохимическую коррозию— 8 электролитах кислотах, щелочах и солях, в соответствии с чем ее называют кислотной, щелочной, солевой или морской. К этому типу относят также почвенную — при воздействии на металл почвы, и атмосферную коррозию — под воздействием атмосферы и других влажных газов. Электрохимическая коррозия характеризуется возникновением электрического тока между отдельными струк-гурными составляющими металла или между разными металлами, находящимися в контакте между собой.  [c.887]

Электрохимическими исследованиями, проведенными совместно с А.М.Крохмальным [208, с. 57—61], установлено рис. 100), что стационарный потенциал цинкового покрь Тия равен примерно -870 мВ, т.е. на 300-320 мВ отрицательнее стационарных потенциалов сталей. За 12 сут испытаний без приложения циклических напряжений (что соответствует базовому количеству циклов вращения 5 10 цикл) потенциалы оцинкованных образцов сдвигаются до — (780 — 800 мВ) вследствие формирования на поверхности плотного слоя оксидо-солевых продуктов коррозии, состоящих из оксидов и гидрооксида цинка. При высоких механических напряжениях происходит смещение электродных потенциалов стали на 80—100 мВ в отрицательную сторону от стационарного значения. Величина смещения потенциалов растет с уменьшением прочности стали и повышением уровня приложенного напряжения. Воздействие циклических напряжений в начале испытаний приводит к появлению в слое трещин, достигающих основного металла, что является причиной резкого смещения потенциала. На последующих этапах испытаний потенциалы образцов сдвигаются в положительную сторону на 30-50 мВ, а затем относительно стабилизируются (см. рис. 100, // участок кривой 3), что связано с пассивацией ювенильных поверхностей покрытия и контактированием коррозионной среды через трещины со сталью, имеющей более положительный потенциал, чем покрытие. Сдвиг потенци4ла в положительную область увеличивается с ростом уровня напряжений и понижением прочности стали, так как эти факторы усиливают разрушение покрытия, и площадь оголенной стали увеличивается. Потенциал образовавшейся коррозионной системы покрытие — основа лежит в достаточно отрицательной области (—900 мВ и ниже), поэтому поверхность стали находится в условиях полной электрохимической защиты в результате протекторного действия покрытия. Однако влияние высоких напряжений без коррозионного фактора приводит к развитию разрушения в глубь стали, что сопровождается интенсивным смещением потенциала в положительную сторону (/// участок). Полное разрушение образца сопровождается резким сдвигом потенциала в отрицательную сторону IV участок).  [c.186]


Сталь, устойчивую к газовой коррозии при высоких температурах (свыше 550 °С), называют окалиностойкой (жаростойкой). Стали, устойчивые к электрохимической, химической (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллит-ной и другим видам коррозии, называют коррозионно-стойкими (нержавеющими). Повышение устойчивости стали к коррозии достигается введением в нее элементов, образующих на поверхности защитные пленки, прочно связанные с основным металлом и предупреждающие контакт между сталью и наружной агрессивной средой, а также повышающих электрохимический потенциал стали в разных агрессивных средах.  [c.292]

Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз 3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе f5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13).  [c.64]

Коррозионную стойкость металлов в пассивном состоянии, эффективность защиты их от коррозии в солевых расплавах при пассивации исследуют в двух направленияхг электрохимическими методами изучают кинетику процессов, протекающих на металлах после пассивации  [c.368]

При погружении в электролит двух разнородных металлов, обладающих различными электродными потенциалами, в электролит будут переходить ионы металла г более низким электродным потенциалом. Если оба металла привести в контакт (при помощи проводника, например), то возникнет гальванический элемент, в котором избыточные электроны от металла с более низким электродным потенциалом (анода) будут перемещаться к металлу с более высоким электродным потенциалом (катоду). Цепь замкнется через электролит, где заряды будут передаваться ионами электролита. Таким образом, электрическое равновесие на аноде будет непрерывно нарушаться, и анод будет разрушаться, т. е. корродировать. Второй электрод (катод) разрушению не подвергается. На корродирующей поверхности металла имеются различные по своим свойствам участки, которые при соприкосновении с электролитохм выполняют роли анодов или катодов. Большей частью поверхность металла представляет собой многоэлектродный гальванический элемент, В зависимости от размеров анодных или катодных участков они образуют макрогальванические или микрогальва-нические элементы. Причины образования электрохимической неоднородности могут быть самые различные макро- и микровключения в сплаве, наличие границ зерен поры в окисной пленке, неравномерная деформация и др. По условиям протекания коррозия разделяется на следующие виды 1) газовая коррозия 2) коррозия в неэлектролитах (например, стали в бензине) 3) атмосферная коррозия 4) коррозия в электролитах (подразделяется в зависимости от характера коррозионной среды на кислотную, щелочную, солевую и т. п.) 5) грунтовая коррозия (например, ржавление трубопроводов) 6) структурная коррозия, обусловливается различными включениями в металле 7) электрокоррозия (возникает под действием блуждающих токов) 8) контактная коррозия, возникает при контакте в электролите металлов с разными электродными потенциалами 9) щелевая коррозия (возникает в узких щелях, например в резьбовых соединениях)  [c.152]

В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе-  [c.80]

Коррозию различают по характеру разрушения — на общую и локальную по виду коррозионной среды — на атмосферную, газовую, почвенную, кислотную, солевую, водную по виду про-цессй — на химическую и электрохимическую.,  [c.129]


Все металлы на воздухе покрыты окисными пленками. Этн пленки менее восприимчивы к воздействию окружающей среды, но толщина их очень мала и потому они не могут надежно защитить металл от коррозионного разрущения. Подвергая металл специальной химической или электрохимической обработке, можно получить на его поверхности окисные и солевые пленки значительной толщины. Такие пленки служат о,аним из эффективных средств защиты металлов от коррозии.  [c.3]

Ридеут и др. [221, с. 137] установили, что в атмосфере сухого хлористого водорода нагруженные образцы разрушаются значительно медленнее, чем во влажном. Они считают, что разрушение происходит только при наличии поверхностной коррозии, а поверхностная коррозия имеет электрохимический характер и, следовательно, может происходить только в присутствии влаги. Хатч и др. [221, с. 122] пришли к выводу, что в совершенно сухом воздухе не идет солевая коррозия, но она также не идет и в водяных парах без свободного кислорода. Онп считают, что для солевой коррозии необ.чодимо наличие кислорода, влаги, хлоридов, а основным источни-  [c.216]


Смотреть страницы где упоминается термин Электрохимическая коррозия солевая : [c.54]    [c.84]    [c.86]    [c.128]    [c.244]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.249 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.360 ]



ПОИСК



Коррозия солевая

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте