Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диагностирование динамических процессов

Диагностирование динамических процессов при создании принципиально новых машин и агрегатов. Наибольшие трудности обеспечения надежности возникают при проектировании машин и агрегатов, физические основы построения которых недостаточно изучены. К таким техническим системам относятся энергетические установки для термоядерного синтеза [1]. Работы в этом направлении ведутся в России и США. По программе Министерства энергетики США они планируются до 2200 года. Первые три этапа (рис. 2.3.4) посвящены экспериментальным исследованиям, обеспечивающим надежность удержания плазмы и стабильность протекания процессов  [c.173]


Второй путь диагностирования заключается в применении методов, которые позволяют судить о состоянии машины по параметрам какого-либо динамического процесса, связанного с функционированием механизмов и отражающим состояние машины. Такой процесс можно разложить на составляющие и получить необходимую информацию о работоспособности отдельных механизмов. При этом в принципе возможно использовать, всего один преобразователь или, во всяком случае, ограниченное число диагностических сигналов. Примером такого подхода могут служить рассмотренные выше методы (см. рис. 175), а также методы акустической диагностики механических систем.  [c.563]

Из всех режимов функционирования наибольшей информативностью для выделения структурных параметров обладает режим непосредственного использования по назначению, характеризующийся динамическими знакопеременными нагрузками. Эти нагрузки (Мд), воздействуя на выходное звено механизма, приводят к полному выбору суммарного углового зазора. В связи с изложенным за основу системы диагностирования целесообразно выбрать динамический метод [4, 5] — одновременную регистрацию параметров динамического процесса (углового перемещения выходного звена, скорости, ускорения характерных элементов привода) для их дальнейшего анализа. Для более упорядоченного воздействия и исключения помех от нагрузки в работе предлагается устройство динамического возбуждения колебаний в объекте — установка тестовых воздействий (УТФ). Задача УТФ — организация реверсивного поворота выходного звена в пределах полного углового зазора при малых значениях угловой скорости 0)1.  [c.108]

Метод эталонных (типовых) осциллограмм — частный случай метода эталонных зависимостей, с помощью которого обычно исследуется зависимость параметров от времени. Он является одним из наиболее простых и эффективных методов диагностирования и широко применяется для выявления дефектов машин (особенно их механизмов прерывистого действия), для которых характерны низкочастотные динамические процессы (гл. 6—9). При анализе осциллограмм синтезируются приемы методов временных интервалов и эталонных модулей. При реализации этого метода расчетным и экспериментальным путем создается эталонная осциллограмма, присущая работоспособной машине, и формируется библиотека осциллограмм, характеризующих ее дефектные состояния. Наиболее сложным при этом методе является определение допусков на значения параметров, указанных в картах дефектов. В ус-  [c.13]


Метод эталонных осциллограмм, представляющий частный случай метода эталонных зависимостей (зависимость параметров от времени). Этот метод является одним из наиболее простых и эффективных при исследовании низкочастотных динамических процессов. Он широко применяется при диагностировании автоматов.  [c.127]

Одной из актуальных задач теории машин и механизмов является задача диагностирования той или иной работающей машины, оценка ее работоспособности, определяемой качеством выполнения технологических операций или процессов. Отклонение от необходимого (заданного) качества выполнения технологических операций обусловлено изменением динамических свойств работаю-ш ей машины или механизма, что и свидетельствует о появлении дефекта в них.  [c.59]

На основании перечисленных особенностей разработана лабораторная автоматизированная система диагностирования шлифовальных станков-автоматов, включающая измерение и анализ их основных характеристик, отдельных узлов и параметров технологического процесса. Система позволяет установить взаимозависимость между отдельными параметрами и их связи с показателями качества. Она включает в себя (см. рисунок) датчики (Д ,. . Д,) основных параметров мощности, потребляемой в процессе шлифования и на холостом ходу, измерений вибраций шпинделя круга, биения шпинделя, давления масляного тумана в шпинделе, осевого смещения шпинделя, измерения статической и динамической жесткости станка, засаливания шлифовального круга, числа оборотов шлифовального круга, измерения уровня вибрации и отклонения точности перемещения узла правки, числа оборотов обрабатываемого изделия, измерения припуска, дифференцирования сигнала припуска, температурной деформации обрабатываемой детали, числа оборотов шпинделя изделия, уровня  [c.116]

Динамические исследования горизонтальных многошпиндельных токарных автоматов и полуавтоматов проводились на 1-м ГПЗ. Были применены съемные датчики крутящего момента [32, 39, 40], получившие в дальнейшем широкое применение при исследовании других автоматов с распределительными валами. Исследования подтвердили сделанный ранее вывод о необходимости регистрации у автоматов с распределительными валами как основного параметра крутящего момента на распределительном валу, в процессе обработки и на холостом ходу (табл. 2). Для расшифровки дефектов использовались динамические циклограммы [32]. Транспортные устройства формовочных линий исследовались в условиях литейного цеха без нарушения нормального производственного ритма. Исследования имели целью получение данных для сравнения поворотных транспортных устройств с различными типами привода и проверки возможности их диагностирования [41]. Установка датчиков не мешала работе линии и были выделены параметры, запись которых давала наиболее важную информацию. К таким параметрам относились давление у насоса, давление в напорной и сливной поло-  [c.13]

Диагностирование методами идентификации. Одно из направлений организации процесса диагностирования заключается в определении параметров состояния по их динамическим характеристикам при тестовом воздействии на объект. Наличие тестового воздействия и определение реакции на него позволяют решать задачи диагностики методами идентификации [68]. В процессе работы необходимо производить наблюдения как над входными воздействиями, так и над выходными реакциями. В условиях функционирования для идентификации необходимо создавать специальные внешние воздействия, которые могут изменять динамику системы, что в свою очередь может отразиться на точности оценки параметров.  [c.706]

Диагностирование автомобиля в целом проводят с целью определения его общего технического состояния и соответствия основным функциональным (выходным) параметрам, определяющим тягово-динамические и топливно-экономические параметры автомобиля. Диагностирование может выполняться самостоятельно или быть составной частью процесса технического обслуживания или текущего ремонта автомобиля.  [c.129]


Процесс поиска оптимального алгоритма диагностирования является многошаговым и для его осуществления может быть привлечен аппарат динамического программирования.  [c.242]

Характеристика работ. Регулировка и испытание на стендах и шасси сложных и ответственных агрегатах, узлов и приборов, автомобилей и замена их при техническом обслуживании. Проверка деталей и узлов электрооборудования на проверочной аппаратуре и проверочных приспособлениях. Установка приборов и агрегатов электрооборудования по схеме, включение их в сеть. Выявление и устранение сложных дефектов и неисправностей в процессе ремонта, сборки и испытания агрегатов, узлов автомобилей и приборов электрооборудования. Сложная и ответственная слесарная обработка. доводка деталей по 6—7-м квалитетам (1—2-м классам точности). Статическая и динамическая балансировка деталей и узлов особо сложной конфигурации. Диагностирование и регулировка систем и агрегатов грузовых и легковых автомобилей и автобусов, обеспечивающих безопасность движения.  [c.275]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]

Особенности диагностирования и исследования причин возникновения дефектов функционирующего, но неработоспособного стола заключаются в том, что в этом случае проявляется влияние динамических явлений в механизмах и возрастает их значение для диагностирования состояния поворотного стола. Поэтому диагностическая процедура включает, кроме проверок статических параметров, также исследования динамики рабочих процессов и динамических параметров объекта. Процедура диагностирования неработоспособного стола из-за потери точности бф включает измерение и оценку нестабильности скорости планшайбы при фиксации Аб)ф (см. рис. 4, а, где приняты следующие обозначения знак -И соответствует нормальным значениям параметров, а — — отклонениям от нормальных), причиной которой могут служить 1) падающая характеристика сил трения в направляющих планшайбы, определяемая величиной давления разгрузки Рраз 2) недостаточная жесткость столба рабочей жидкости в трубопроводе Сда, зависящая от длины трубопровода и наличия воздуха в трубопроводе 3) недостаточная жесткость привода и валонрово-да Сприв. определяемая качеством конструкции и деталей, а также соединений в цепи привода.  [c.87]

При диагностировании механизмов суппортной группы токарных многошпиндельных автоматов удобен динамический способ, основанный на измерении крутящих моментов на РВ, его сущность описана выше. Измерение этого параметра производится с помощью съемных первичных преобразователей со встроенными микроусилителями [22]. В качестве примера на рис. 7.1 приведены типовые динамограммы дефектов (пунктирные линии) механизмов поперечных суппортов автомата модели 1А225-6 и его модификаций 1 — нестабильное включение муфты ускоренного хода 2, 3,4 — увеличение нагрузок на привод при отводе и подводе суппортов из-за повышенных сил трения в кулачковых механизмах и клиньях направляющих 5,6 — преждевременное переключение фрикционной муфты 4, 6 — неравномерность перемещения суппортов на рабочей скорости из-за дефектной регулировки клиньев в направляющих суппортов. Здесь же для сравнения сплошными линиями нанесены нормативные осциллограммы. Динамограммы дефектов механизмов представляют собой части осциллограмм крутящих моментов, записанных на отдельных участках цикла работы станков, которые имеют определенные дефекты в узлах. Дефекты создавались также искусственно путем разрегулировки механизмов у одного станка. Датчик крутящего момента устанавливается при проверке поперечных суппортов на свободном участке продольного РВ между коробкой передач и шпиндельной стойкой. Запись момента осуществляется при холостом ходе станка. При необходимости контроля станков с технологическими наладками крутящий момент записывается при полном цикле их работы. Зная оптимальные величины нагрузок для каждой наладки, можно оценить качество технологического процесса изготовления  [c.114]


Для стендовых исследований динамических характеристик станков разработана и демонстрировалась на международной выставке Наука-83 автоматизированная установка ЦИС-2Т (разработчики ЭНИМС, Тольяттинск. политехи, ин-т, Ульяновское конструкторское бюро тяжелых и фрезерных станков). На установке определяются показатели виброустойчивости, жесткости, формы колебаний, резонансные режимы работы, амплитудно-фазовые частотные характеристики. Автоматизация процесса испытаний и обработки данных обеспечивается встроенной мини-ЭВМ. Распределение работ по диагностированию оборудования в цехе между тремя уровнями системы управления Г АП приведено на рис. 11.2.  [c.205]

За последние годы комплексная автоматизация производственных процессов стала основным средством технического прогресса в промышленности. Современные темпы развития машиностроения требуют сокращ,ения сроков и повышения качества разработки новых конструкций автоматов, что определяет необходимость в развитии экспериментальных и аналитических методов исследования их механизмов. Эти исследования становятся все более сложными и трудоемкими. Они составляют суш,ественную часть общего объема работы научно-исследовательских организаций, конструкторских бюро и требуют системного подхода к их проведению [1]. Важное значение в этих услов иях приобрели динамические методы исследования и диагностирования механизмов, проведение которых в производственных условиях часто представляет значительные трудности. Успехи, достигнутые в области теории механизмов, машин и вычислительной техники, создали необходимую базу для усовершенствования методов расчета и синтеза наиболее ответственных механизмов автоматов, а также для более точного определения критериев их качества.  [c.3]

Экономическая эффективность методов определяется сокращением числа аварий и длительных простоев оборудования, снизинием трудоемкости и числа ремонтов, повышением качества регулировки и настройки механизмов, что позволяет контролировать и сохранять заданные параметры процессов и движений в конечном итоге повьпиаются производительность и ресурс оборудования. Экономическая эффективность и целесообразные масштабы внедрения динамических методов контроля и диагностирования технологического оборудоваю1я существенно зависят от контролепригодности последнего.  [c.227]

При диагностировании на стадии проектирования станочных систем большое внимание уделяется точностной надежности, которая во многих случаях ограничивает ресурс машины. При этом исследуются не только динамические нагрузки, но и тепловые деформации, а также процессы резания и стружкообразования [3]. Для этого применяются системы не только функционального, но и тестового диагностирования [2], в том числе по виброакустическйм показателям. При создании технологического оборудования с небольшим удельным весом времени выполнения технологических операций точечной сварки, штамповки, упаковки и др. - большое внимание уделяется отработке. механизмов холостых ходов, которые определяют надежность оборудования [7]. Здесь наиболее широко используются методы расчета механизмов, разработанные в механике машин, и одновременно регистрируются при стендовых испытаниях большое число кинематических, динамических и точностных параметров.  [c.196]


Смотреть страницы где упоминается термин Диагностирование динамических процессов : [c.173]    [c.448]    [c.42]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.173 ]



ПОИСК



Диагностирование

Процессы диагностирования



© 2025 Mash-xxl.info Реклама на сайте