Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент вибрационный

Юнга 36, 37, 72 Момент вибрационный 391  [c.610]

Асимптотическое решение уравнений движения при наличии периодического момента. Вибрационный разгон тележки. В случае периодического момента первые интегралы невозмущенной задачи, найденные в п. 2 примем в качестве новых переменных и вместо переменных 3, Р,У введем переменные Z, То, Kz, которые связаны со старыми переменными формулами  [c.560]

Опорам и направляющим с трением качения присущи следующие преимущества малые потери на трение и моменты сопротивления при трогании с места относительная простота сборки и ремонта механизмов малые габариты в осевом направлении. К недостаткам этих опор относятся повышенная чувствительность к ударным и вибрационным нагрузкам, повышенные радиальные габариты.  [c.426]


Здесь J, J, — моменты инерции демпфируемого объекта и гасителя с, с, — крутильные жесткости валов ft, — коэффициент вязких потерь при парциальных колебаниях гасителя Мд — амплитуда вибрационного крутящего момента, приложенного к диску демпфируемой системы.  [c.288]

Эффект группирования дисперсных частиц. Рассмотрим случай, когда вибрационное воздействие приложено не к несущей, а к дисперсной фазе. Пусть твердые частицы прямолинейно движутся через покоящуюся на бесконечности несущую среду. Каждая из частиц, пролетая в момент времени t через сечение х = 0, которое будет называться сечением модуляции, приобретает скорость  [c.373]

Деталь очищают от грязи, покрытий и т. п., обезжиривают и высушивают, затем на ее поверхность наносят слой пенетранта и выдерживают некоторое время для того, чтобы жидкость проникла в открытые полости дефектов. Для ускорения процесса применяют вакуумную, компрессорную, ультразвуковую вибрационную пропитку. После этого поверхность изделия очищают от пенетранта или гасят его специальным веществом (для люминесцентного метода) в полостях же дефектов индикаторная жидкость остается. На поверхность изделия после удаления пенетранта наносят проявляющий материал — быстросохнущую суспензию (лаковое покрытие). Проявляющий материал, обладающий сорбционными свойствами, вытягивает пенетрант из полостей дефектов, что образует индикаторные следы, размер которых тем больше, чем глубже дефект и больше выдержка с момента нанесения проявляющего слоя. Индикаторный след при цветном методе имеет обычно ярко-красную окраску, при люминесцентном — светится в УФС.  [c.36]

Ввиду того что теория известных вибрационных магнитометров [1, 2] разработана, исходя из представления испытуемого образца в виде точечного магнитного диполя, измерения магнитного момента проводились на образцах небольших размеров. Поэтому вибрационный метод используется преимущественно для измерения магнитного момента образцов в виде сферы диаметром 2—3 мм 2] и намагниченности в функции от поля для однородно намагниченных образцов (на эллипсоидах одного типоразмера) [4]. Для однотипных неоднородно намагниченных образцов одного типоразмера вибрационный метод применяется для измерения только намагниченности насыщения [5].  [c.150]

Авторами настоящей работы предложен свободный от указанных недостатков вибрационный метод угловых колебаний стержневого образца для измерения его магнитного момента 7].  [c.151]

На рис. 2.2 представлена зависимость дисперсии от параметра Л/н, подсчитанная по формуле (2.1) для функций плотности распределения, изображенных на рис. 2.1, Так как величина характеризует ширину кривой плотности распределения р х), то рост функции о (Мн) есть следствие отмеченной выше тенденции к размыванию кривых плотности при возрастании Ма. Рис. 2.2 можно также интерпретировать следующим образом мощность вибрационного сигнала редуктора возрастает при увеличении нагружающего момента до некоторого предела (Мн 9 тм), а затем начинает уменьшаться.  [c.41]


Геометрически двумерные функции плотности распределения вероятностей представляются поверхностями в пространстве х, х2,р , х2) . На рис. 2.10 в качестве примера приведены функции плотности совместного распределения двух вибрационных сигналов, измеренных на испытуемом и нагружающем редукторах стенда [38]. Поверхности здесь изображены в виде линий равного уровня на каждой кривой функция p xi, х ) имеет постоянное значение. Из рис. 2.10 хорошо видно, что при изменении нагружающего момента двумерные функции плотности распределения, как и одномерные (см. рис. 2.1), существенным образом видоизменяются.  [c.54]

Допустим теперь, что вибрации машины вызываются в основном переменным моментом сил, возникающим в работающей машине. В симметричной машине момент сил вызывают только поворотные формы движения, которые приводят к появлению на фундаменте сил в противофазе и, следовательно, к небольшому потоку вибрационной энергии. Наоборот, в несимметричной машине переменный момент сил вызывает не только поворотные колебания, но и поступательные, благодаря чему на фундаменте возникают синфазные силы, увеличивающие поток вибрационной энергии в прилегающие конструкции.  [c.251]

На дисках а укрепляются неуравновешенные равные массы т так, что результирующая неуравновешенных сил направлена вдоль оси, перпендикулярной к плоскости рисунка, или так, что создается крутящий момент относительно той же оси. Корпус 2 машины жестко укрепляется на испытываемой конструкции. При вращении вала / корпус 2 подвергается вибрационной нагрузке, а с ним и испытываемый фундамент или опора.  [c.561]

На зубчатых колесах а и дисках Ь укреплены неуравновешенные равные массы m так, что возникает либо результирующая неуравновешенных сил, направленная вдоль оси, перпендикулярной к плоскости рисунка, либо враш,аюш,ий момент относительно той же оси или относительно оси X. Корпус 3 машины укрепляется на испытываемой конструкции. Враш,ение создается двумя связанными электромоторами и С. . При вращении валов / и 2 корпус машины 3 вместе с испытываемой конструкцией подвергается вибрационной нагрузке,  [c.562]

Конструкции машин подвергаются воздействию нескольких сил, приложенных в различных точках. Например, к корпусу электрической машины приложены силы и моменты в районе подшипников и в районе крепления статора. Вибрации в контрольной точке q1 (со) такой машины являются следствием действующих на корпус сил. На низких частотах, когда вибрационные процессы имеют гармонический характер, вибрационная скорость в таких случаях определяется по формуле  [c.433]

Практика показывает, что при определении приближенного влияния конструкций машин на величину колебательной мощности, излучаемой в виде нормальных опорам вибраций, достаточно принимать во внимание только вибрационные силы трех взаимно перпендикулярных направлений (без учета моментов).  [c.439]

Рис. 13.76. Электромагнитный вибрационный питатель для сыпучего материала. В отверстиях тяжелой металлической плиты 6 установлены пакеты пластинчатых пружин 2, соединенных с лотком 1 посредством щек 5. Якорь 5 электромагнита прикреплен к лотку, а катушка 4 электромагнита — к плите 6. Когда электромагнит находится под током, якорь 3 с лотком 1 перемещается под некоторым углом вправо, сжимая пружины 2 при этом транспортируемый материал за этим движением не следует. В момент обесточивания электромагнита лоток 1 под действием пружин 2 возвращается в исходное положение, транспортируя материал в направлении стрелки Б. Рис. 13.76. Электромагнитный <a href="/info/101904">вибрационный питатель</a> для <a href="/info/158448">сыпучего материала</a>. В отверстиях тяжелой металлической плиты 6 установлены пакеты <a href="/info/4687">пластинчатых пружин</a> 2, соединенных с лотком 1 посредством щек 5. Якорь 5 электромагнита прикреплен к лотку, а катушка 4 электромагнита — к плите 6. Когда электромагнит находится под током, якорь 3 с лотком 1 перемещается под некоторым углом вправо, сжимая пружины 2 при этом транспортируемый материал за этим движением не следует. В момент обесточивания электромагнита лоток 1 под действием пружин 2 возвращается в <a href="/info/468256">исходное положение</a>, <a href="/info/441255">транспортируя материал</a> в направлении стрелки Б.
При построении моделей возникают две основные задачи. Первая связана с определением структуры объекта, оцениванием линейности, стационарности, выбором информационных вибрационных сигналов, определяющих техническое состояние и его изменение. Вся эта информация априорна для решения второй задачи — определения параметров и отклонений параметров объектов. Определение параметров объекта или эквивалентной ему модели включает в себя не только оценку их для данного момента, но и прогнозирование их изменения, что дает возможность применять эти результаты для диагностики качества функционирования.  [c.157]


Изучалась вибрационная картина в различных точках фундамента и в диаметрально противоположных точках колеса испытуемого редуктора для различных чисел оборотов ведущего вала и нагружающих моментов.  [c.39]

В качестве изменяющегося параметра зацепления рассматривался переменный нагружающий момент Р. Изменение нагружающего момента, естественно, можно достаточно просто оценить и не изучая вибрационные процессы. Однако, учитывая то, что изменение нагружающего момента приводит к изменению параметров зацепления (в частности, при оптимальных нагрузках выбирается ошибка зацепления за счет деформативной податливости зубьев или, например, в планетарной передаче могут уравняться нагрузки на сателлиты и т. д.), выделение информативных признаков вибрационного процесса в этом случае может пригодиться при изучении других, более интересных параметров зацепления.  [c.39]

На рис. 1 изображены одномерные законы распределения вероятностей вибраций фундамента редуктора РС-1 при 700 об мин ведущего вала (А/ = = 1 окт., /о = /г = 4000 гг ). При малом нагружающем моменте одномерный закон распределения близок к нормальному, т. е. вибрационный про-  [c.39]

Основой большинства существующих методов определения неуравновешенности гибких роторов являются замеры вибраций его опор. Наличие нечувствительных скоростей и ряд других причин при измерениях на опорах не могут дать четкой картины распределения неуравновешенности и не характеризуют в достаточной мере вибрационное состояние ротора. Поэтому одним из критериев сбалансированности гибкого ротора является сведение к минимуму изгибающих моментов в роторе. Более полную информацию о динамическом состоянии ротора можно получить с помощью тензодатчиков, наклеенных на тело ротора в ряде исследуемых сечений. Тензодатчики дают возможность определить как динамические напряжения, возникающие в роторе, так и  [c.57]

На рис. 2.15 приведены линии регрессии двух вибрационных сигналов редуктора, для которых функции плотности совместного распределения изображены на рис. 2.10. При малых значениях нагружающего момента вибрационные сигналы в двух рассматриваемых точках практически независимы, так как линии регрессии параллельны осям координат. При увеличении Мн между сигналами появляется линейная связь, которая при дальнейшем увеличении нагрузки становится все более тесной. При больших нагружаюд] их моментах линии регрессии частично сливаются и становятся кривыми, что свидетельствует о наличии сильной нелинейной связи между сигналами, близкой к функциональной.  [c.64]

Вибрационная связь (взаимодейсЕвие) 244 Вибрационная сила, обобщенная, вибрационный момент — См соответственно Сила вибрационная, обобщенная и Момент вибрационный  [c.348]

Механизмы с несколькими степенями свободы находят все болыиее применение в различных отраслях техники разнообразные динамические упругие муфты, трансформаторы крутящих моментов, механизмы для сборки покрышек колес, вариаторы, дифференциальные зубчатые механизмы, механизмы простейших автооператоров и роботов, вибрационные машины.  [c.356]

К недостаткам нодшипииков качения следует отнести отсутствие разъемных конструкций, сравнительно большие радиальные 1 )бариты, ограниченную быстроходность, связанную с кинематикой и динамикой юл качения (центробежные силы, гироскопические моменты и пр.), низкую работоспособность при вибрационных и ударных нагрузках и при работе в агрессивных средах (например, в воде).  [c.285]

Для оценки внутренней динамической нагрузки были разработаны ударная теория, рассматриваюшая удар зубьев в момент пересопряжения [42 , и вибрационная теория, изучающая нагрузки вследствие кинематических погрешностей и изменения жесткости зубьев по углу поворота.  [c.178]

Вибрационные воздействия (кинематические и силовые) являются колебательными процессами. Силовые воздействия характеризуются функциями времени составляющих сил F(t) или моментов сил M(t), действующих на объект кинематические воздействия характеризуются ускорениями a(t) точек источника колебаний, связанных с объектом виброзашиты, их скоростями v(ii и перемещениями s(l).  [c.268]

Е5 результате приведенный к диску вибрационный момент М(1) = ih "" (с крутильная жесткость участка вала между двигателем и диском) возбуждает крутильные колебания диска.  [c.291]

Электроконтактные регуляторы применяются в двигателях малой мощности. На рис. 31.13 показан электроконтактный регулятор вибрационного действия. В момент включения двигателя ток проходит через замкнутые контакты 3 регу-лятора и подается в цепь питания двигателя. При увеличении частоты вращения сила инерции груза 2 преодолевает силы сопротивления пружин / и 4, отклоняет груз 2 и размыкает контакты 3. Частота вращения якоря уменьшается, вследствие чего контакты вновь замыкаются, и процесс повторяется. Непрерывное замыкание и размыкание контактов дают возможность авто.матически поддерживать угловую скорость Ыср, близкую к постоянной. Изменение задаваемой угловой скорости в этих регуляторах осуществляется подбором элементов электрической схемы.  [c.400]

На рис. 7.38,а показан гиротрон (вибрационный гироскоп). Рассматривая ветвь гироскопа как консольно закрепленный стержень (рис. 7.38,6), у которого момент инерции сечения относительно оси хг много больше момента инерции относительно оси хз (в этом случае можно приближенно считать, что при колебаниях точки осевой линии стержня смещаются только в плоскости  [c.232]

Наибольшее распространение в настоящее время получили подшипники качения. Их основные преимущества по сравнению с подшипниками скольжения малые потери на трени(з и малые моменты сопротивления при трогании с места относительная простота сборки и ремонта механизмов широкая стандартизация, упрощающая конструирование и обеспечивающая взаимозаменяемость малые габариты в осевом направлении. К недостаткам подшипников качения следует отнести повышенную чувствитех ьность к ударным и вибрационным нагрузкам, значительные радиальные габариты, отсутствие разъема в диаметральной плоскости. Этн недостатки з атрудняют сборку конструкции, а иногда даже делают подшипники качения вовсе неприменимыми (например для коленчатых валов).  [c.518]


Статическое уравновешивание. Чаще всего в механизмах задача по уравновешиванию сводится к возможному уменьшению действия сил инерции. Такое уравновешивание механизма называется статическим. Результирующий момент сил инерции обычно не уравновещивается. Вибрационные действия, вызванные этим моментом, в значительной мере погашаются влиянием момента инерции большой массы корпуса или фундамента. Вредное действие момента сил инерции, кроме этого, частично погашается действием моментов сил движущих и сопротивления.  [c.95]

Первоначально растягивают деталь в зоне трещины до раскрытия ее берегов (выход из соприкосновения берегов), о чем судят по показаниям датчика перемещения, расположенного у каждой вершины трещины (рис. 8.32). Зафиксировав величину усилия, при котором реализуется раскрытие берегов трещины, выполняют продольное виброперемещение берегов трещины. В процессе этих перемещений уменьшают растягивающую нагрузку вплоть до сжатия. После достижения величины сжимающего усилия, равного усилию раскрытия берегов трещины, вибрацию необходимо постепенно снять. Осуществление продольного вибрационного перемещения берегов трещины до ее раскрытия невозможно из-за наличия контактного взаимодействия ответных частей излома по отдельным участкам. Они препятствуют продольному перемещению, что приводит к замедлению процесса изнашивания поверхностей излома. Под действием вибрации с момента раскрытия трещины и до сжатия ее берегов сначала части излома изнашиваются и выглаживаются, а затем (при постепенном снятии вибрации) образованные сглаженные части излома схватываются. После этого по обе стороны от плоскости трещины высверливают отверстия в плоскостях, перпендикулярно плоскости трещины и с наклоном оси 45° к плоскости излома (рис. 8.32). Оси отверстий в соседних плоскостях располагают Под углом 90° друг к другу. После удаления перемычек между отверстиями в образованные пазы под углом 45° к плоскости трещины запрессовывают фигурные вставки. Усилие сжатия сохраняют, что обеспечи-  [c.451]

Формирование строчечности и псевдоборозд-чатого рельефа излома указывает на реализацию процесса роста трещины в области МНЦУ. Поэтому отсутствие регулярных мезолиний на начальном этапе роста трещины следует относить к развитию трещины на значительную длину в каждом полете под действием вибрационных нагрузок на поврежденные лопатки. Поскольку повреждения могли быть нанесены на лопатки в любой момент времени после начала эксплуатации, то следует иметь в виду, что истинная продолжительность роста трещины могла быть существенно меньше 90 полетов.  [c.521]

В процессе эксплуатации на самолете выпо.п-нялись регламентные работы, после чего было произведено 140 выпусков закрылка до разрушения тяги. Самолет проходил также ремонт, после чего было проведено около 1700 выпусков закрылка до разрушения тяги. Необходимо было определить момент неправильной установки тяги из условия, что ее нагружение за полет происходит 1 раз в момент выпуска закрылка для тяги последовательность операций выпуск-работа-уборка закрылка определяет цикл ЗВЗ при одновременном действии вибрационных нагрузок от набегающего на закрылок потока воздз ха. В связи с этим к тяге в цикле ЗВЗ приложены как вибрационная, так и меняющаяся 1 раз за полет нагрузка от нулевого до максимального значения.  [c.743]

Важность исследования импульсных напряжений в конструкциях из композиционных материалов может быть проиллюстрирована на примере лопатки компрессора реактивного двигателя [61]. Лопатки рассчитывают с учетом восприятия центробежных и вибрационных нагрузок. Кроме того они должны быть рассчитаны на случай соударения с посторонними объектами, такими как птицы, град, камни, гайки и болты. Скорость соударяющегося тела относительно лопатки может составлять около 450 м/с. Импульсное воздействие малого тела продолжается очень недолго (<С50 мкс) и вызывает в начальный момент сосредоточение энергии удара в малой области лопатки. При этом удар может вызвать не только образование местного кратера или трещины, но и сопровождается повреждениями вдали от места контакта, вызываемыми отражением волн напряжений от границ и эффектом фокусировки из-за изменения геометрии лопатки. Обеспечение прочности лопатки при соударении с внешними объектами требует специальных конструктивных решений, таких как введение в материал высокопрочной сетки и установка на ведущую кромку противоударного протектора.  [c.265]

По характеру воздействия на человека различные типы и категории вибрации в общем случае можно объединить в два класса вибрации, воздействие которых носит случайный характер (к этому классу относятся транспортная, транспортно-технологическая и локальная вибрации, источниками которых являются неровности дороги агрофона, шероховатости обрабатываемых поверхностей) вибрации, воздействие которых носит детерминированный характер (к этому классу можно отнести вибрацию пола в производственных помещениях, в которых вследствие большого числа установленного однотипного оборудования возникают биения). В большинстве случаев вследствие того, что включения и выключения отдельных единиц оборудования (например, в ткацких и механических цехах) происходят в разные моменты времени и распределение времени носит случайный характер, вибрация во многих производственных помещениях при измерении ее за достаточно большой промежуток времени начинает носить случайный характер. Однако в ряде случаев (в машинных залах, компрессорных станциях, мельницах и т. д.) вибрацию пола с высокой степенью точности можно считать детерминированной. Далее в п. 3 более подробно будут рассмотрены особенности измерения детерминированной вибрации. Здесь же остановимся на методах измерения наиболее распространенного класса вибрационного воздействия — случайной вибрации.  [c.42]

При исследовании транспортной операции для движения тракторов был выбран участок дороги достаточной протяженности (более 10 км) с грунтовым покрытием средней изношенности без колеи с одинаковым характером микропрофиля. Измерения эквивалентного вибрационного параметра на каждом тракторе проводили на трех скоростях — 16, 26 и 32 км/ч при этом в каждой серии замеров через 20с фиксировали показания виброметра 00031. Затем трактористу одного из тракторов была предоставлена возможность ехать со скоростью, изменяющейся по его усмотрению в режиме нерегулярного торможения и разгона. В этом режиме проводили непрерывные измерения вибродозиметром ВД-01 с фиксацией значения дозы вибрации каждые 30 с со времени начала измерений. Во всех случаях для исключения влияния переходных искажений, которые могут быть в начальные моменты движения и при включении прибора, первый отсчет в измерительной серии фиксировали через 20 с для виброметра 00031 и через 30 с для вибродозиметра ВД-01, а приборы включали до начала движения.  [c.49]

Возвращаясь снова к распределениям вибрационных сигналов редуктора, изображенным на рис. 21, мы можем теперь их интерпретировать как функции плотности распределения вероятностей суммы двух сигналов близкого к нормальному и гармонического. Для малых нагрузок Жн амплитуда гармонической составляющей мала и распределение близко к нормальному, Б частности, имеет одну моду. При увеличении Мп амплитуда гармонической составляющей сигнала возрастает, расиределение становится двумодальным и все более широким. Результаты спектрального анализа подтверждают сказанное в полосу анализа входит зубцовая частота, амплитуда зубцовой гармоники увеличивается с ростом нагружающего момента М .  [c.46]

С помощью описанного распределения гармонических сигналов можно следующим образом интерпретировать графики функций плотности двумерного распределения вибрационных сигналов, изображенные на рис. 2.10. Для малых значений нагружающего момента распределение близко к нормальному (ср. с рис. 2.11). При увеличении момента Мд в обоих вибрационных сигналах появляются гармонические составляющие (на зубцовой частоте), находящиеся в противофазе, которые приводят к вытя-нутости линий равного уровня вверх и к появлению максимумов.  [c.58]


Полученное выражение динямического момента полностью совпадает с выражением, данным в работе [34] и названным там вибрационным моментом.  [c.172]

Что касается главного момента от этих сил и сил веса, т. е. слагаемого 2 входящего в выражение для Мф [формула (68)], то к его уравновешиванию обычно не прибегают, предполагая, что его вибрационное действие в значительной мере погасится влиянием момента инерций большой массы фундамента относительно оси, перпендикулярной плоскости чертежа и проходящей через центр тяжести фундамента (см. п. 23) статическое же действие урав-  [c.165]

Анализ отклика сооружения и расположенного в нем оборудования осуществляется далее в соответствии со схемой на рис. 3.12 и не отличается от рассмотренных Bbmie для аварийных нагрузок F(t) и вибрационных воздействий Ар (t), заданных в виде аналитических или экспериментальных зависимостей от времени. При этом, очевидно, должна быть учтена и предшествующая на момент возникновения сейсмических воздействий нагруженность оборудования, обусловленная соответствующим режимом эксплуатации АЭС.  [c.97]

Временные параметры обычно оцениваются по осциллограммам кинематических параметров, энергетические параметры — в основном по электрической мощности привода, но в ряде случаев целесообразно определять мощность на входных и выходных звеньях кинематических цепей. При этом измерение мощност1[ сводится к измерению крутящих моментов или сил и скоростей движения, т. е. используются параметры первой и второй групп. Измерение температурных параметров проводится сравнительно редко ввиду сложной связи температуры узлов трения с кинематическими и точностными характеристиками ПР. Чаще этот параметр используется как диагностический. Особенность его измерения во многих случаях — необходимость применять бесконтактные методы измерений температуры в отдельных точках и температурных нолей из-за сложности встраивания термодатчиков в узлы механизмов ПР. Вибрационные параметры представ-  [c.163]


Смотреть страницы где упоминается термин Момент вибрационный : [c.749]    [c.218]    [c.196]    [c.742]    [c.747]    [c.30]    [c.31]   
Вибрации в технике Справочник Том 2 (1979) -- [ c.210 , c.233 ]

Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.391 ]



ПОИСК



Анализ основных уравнений. Вибрационные моменты, парциальные угловые скорости вибрационная связь между роторами . 6.2.4. Стационарные режимы синхронного вращения и их устойчивость Интегральный признак устойчивости (экстремальное свойство) синхронных движений

Вибрационная сила, обобщенная, вибрационный момент — См соответственно

Момент вибрационный величин

О вибрационная

Сила вибрационная, обобщенная н Момент

Сила вибрационная, обобщенная н Момент вибрационный



© 2025 Mash-xxl.info Реклама на сайте