Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные свойства жидкостей и газов

Согласно основному свойству жидкостей и газов — легкой подвижности. — при равновесии отсутствуют касательные силы сопротивления взаимному скольжению жидких объемов друг по отношению к другу по площадкам их соприкосновения, а действуют лишь нормальные к этим площадкам силы.  [c.104]

ОСНОВНЫЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ  [c.5]

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ  [c.8]

Основные физические свойства жидкостей и газов  [c.9]


Основной особенностью течения жидкости, в которой рассеяны мелкие пузырьки газа, является то, что смесь имеет большую плотность, порядка плотности жидкости, так как масса газа ничтожно мала из-за малой плотности и малого количества. Вместе с тем, смесь обладает сжимаемостью вследствие сжимаемости пузырьков газа, в то время как жидкость практически несжимаема. Сочетание этих качеств резко отличает свойства смеси от свойств жидкости и газа.  [c.203]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики.  [c.186]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики. Общие законы и уравнения статики и динамики жидкостей и газов. Силы, действующие в жидкостях. Абсолютный и относительный покой (равновесие) жидких сред. Модель идеальной (невязкой) жидкости. Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.  [c.187]

Реальные жидкости и газы обладают вязкостью и сжимаемостью. И если для жидкости более характерной чертой является вязкость, то для газа при достаточно большой скорости движения (более 70 м/с) определяющим свойством будет сжимаемость. Сжатие газа сопровождается нагреванием, поэтому полностью описать движение сжимаемого газа в рамках механики (не привлекая понятий из учения о теплоте) невозможно. По этой причине мы рассмотрим в основном движение жидкости и газа с учетом лишь внутреннего трения (вязкости).  [c.285]

Г лава 1. ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ  [c.5]

Вязкость — свойство жидкостей и газов оказывать сопротивление скольжению или сдвигу при перемещении одного слоя жидкости (или газа) по другому. Это свойство характеризуется коэффициентом динамической вязкости (или просто динамической вязкостью) Т1. Вязкость объясняется действием молекулярных сил и движением молекул в жидкостях вязкость определяется в основном действием молекулярных сил (расстояние между молекулами относительно малы), а в газах — движением молекул (расстояния между ними относительно велики).  [c.127]

Поскольку свойства жидкостей и газов рассматриваются в последующих разделах курса, мы не будем здесь подробно анализировать волновые процессы в этих средах, а приведем лишь основные сведения о них. Подчеркнем еще раз, что в жидком и газообразном веществе не могут возникать поперечные волны, так как в этих средах осуществима лишь деформация всестороннего разрежения-сжатия, а для возникновения поперечных волн необходимо наличие деформации сдвига.  [c.139]


К основным параметрам, характеризующим свойства жидкостей и газов, принадлежат плотность р, кг/м динамический коэффициент вязкости Н с/м кинематический коэффициент вязкости V, м /с, коэффициент сжатия рр, м /Я, и др.  [c.5]

В примере (рис. 6.7) уравнение Бернулли позволило определить приращение давления только в одной точке обтекаемого контура. В остальных точках обтекаемого контура получить давление, действующее на тело, из уравнения Бернулли нельзя. Для определения эпюры давлений р (рнс. 6.8) надо решать общие уравнения движения жидкости с учетом ее взаимодействия с твердым телом. К сожалению, получить теоретически аэродинамические силы, особенно с учетом реальных свойств жидкости или газа (сжимаемости, вязкости) и режимов обтекания, для разных профилей сечений стержня не представляется возможным. Поэтому основную роль при определении аэродинамических сил имеют экспериментальные исследования, которые полностью подтверждают сделанный качественный вывод о том, что аэродинамические силы зависят от квадрата скорости потока.  [c.237]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Применение термодиффузии для расчета равновесных термодинамических свойств — новое направление, возникшее в течение последних лет в результате развития неравновесной термодинамики. Ранее термодиффузию использовали в основном как метод разделения жидкостей и газов. О величине эффекта разделения можно получить представление, решив уравнение (8.231) для стационарного состояния, когда У]=0.  [c.235]

Жидкости и газы, являющиеся объектом "изучения гидромеханики, обладают двумя основными свойствами сплошностью и легкой подвижностью, или текучестью.  [c.5]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Рабочее тело поступает в турбину и выходит из нее с постоянным расходом, совершая механическую работу W. Характер движения рабочего тела в турбине весьма сложен м прежде чем понять, как она работает, потребуется уяснить некоторые основные свойства течений жидкостей и газов.  [c.71]


Все жидкости и газы в зависимости от влияния их свойств на условия теплообмена могут быть разделены на три основных класса, различающихся порядком величины числа Прандтля  [c.88]

Все книги справочной серии представляют собой единое целое. Их объединяет стремление издательства и авторского коллектива дать возможно более полный свод знаний по теплотехнике и теплоэнергетике при едином методическом подходе к подбору и построению материала. Свойства материалов, применяемых в теплотехнике, приводятся в разных разделах в зависимости от их назначения основные термодинамические свойства веществ даны в разделе Термодинамика , коэффициенты теплопроводности и вязкости —в разделе Основы тепло- и массообмена и Конструкционные материалы теплотехники , данные по сжимаемости жидкости, поверхностному натяжению — в разделе Механика жидкости и газа . Указатель таблиц, содержащих свойства и характеристики веществ и материалов, которые вошли во все четыре книги справочной серии Теплоэнергетика н теплотехника , приведен в конце данной книги. Все разделы снабжены списками литературы, а все книги серии — предметными указателями.  [c.7]

При анализе динамических свойств температурных датчиков весьма эффективным является операционный метод. С его помощью был проведен анализ нестационарного теплообмена различных температурных датчиков с учетом влияния армировки, отвода тепла по пирометрическому жезлу, лучистого теплообмена, неравномерности температур по сечению при измерении переменных во времени температур газов, жидкостей и поверхностей твердых тел. Основные результаты исследования изложены в работах [1, 4, 5]. Ниже приводятся приближенные решения некоторых задач применительно к измерению температур жидкостей и газов.  [c.370]

В разд. 2 даны основные законы термодинамики и указаны важнейшие сферы их применения, рассмотрены фундаментальные определения, обеспечивающие понимание общности методов термодинамики для анализа различных явлений, включая реальные процессы теплоэнергетики. Описаны основные термодинамические свойства твердых тел, жидкостей и газов, представлены дифференциальные уравнения термодинамики, устанавливающие взаимосвязи между этими свойствами. Рассматриваются общие условия равновесия различных видов термодинамических систем, включая фазовое равновесие. Приводятся уравнения для расчета термодинамических свойств газовых смесей, в том числе для влажного воздуха.  [c.7]

В пределах настоящего курса эти специальные вопросы не могут быть даже затронуты. Удовольствуемся лишь кратким качественным описанием молекулярных структур жидкостей и газов, что может оказаться в дальнейшем полезным при сравнительном рассмотрении свойств этих двух основных состояний или, как иногда говорят, фаз вещества.  [c.12]

Дано описание двух классов пространственных движений жидкости и газа, обладающих большим функциональным произволом и характеризуемых свойством линейности основных параметров течений по части пространственных координат. Построенные классы решений позволяют учесть такие свойства сплошной среды, как теплопроводность и электропроводность для газа, вязкость и электропроводность для жидкости в приближении Буссинеска. Для невязкого газа исследована связь описанных течений с теорией бегущих волн ранга три — тройных волн. Получены в качестве спецификаций исходных классов течений определенные системы уравнений, описывающие новые типы вихревых тройных волн, обладающих функциональным произволом. Построены серии точных решений.  [c.197]

Акустические колебания характеризуются частотой, интенсивностью и видом. Виды колебаний в основном определяются свойства-м5й упругой среды и способом их создания. В жидкостях и газах, обладающих упругостью объема, акустические колебания распространяются с одинаковой скоростью во всех направлениях. В твердых телах, характеризуемых помимо упругости объема еще и упругостью формы (сдвиговой упругостью) и неодинаковостью деформаций растяжение-сжатие по различным направлениям (для анизотропных тел), закономерности распространения акустических волн значительно сложнее.  [c.140]

Предмет механики жидкости и газа. Основные свойства, макромодели жидкости и газа сплошность и подвижность  [c.13]

Основными причинами отклонения от закона Дарси нри фильтрации жидкости и газов в пористых средах в настоящее время считаются зависимость свойств пласта и жидкости от изменения давления, наличие начального градиента давления в пласте, возрастание фильтрационных сопротивлений, связанных с инерцией при больших скоростях, что может иметь место в призабойной зоне работающих скважин.  [c.253]

Изложены основные вопросы технической механики жидкости и газа. Приведены физические свойства жидкостей и газа. Освещены законы равновесия, основы кинематики и динамики жидкости и газа, гидравлические сопротивления. Рассмотрено движение по трубопроводам и истечение через отверстия и насадки жидкости и газа. Описано обтекание твердых тел потоком жидкости и газа. Даны основы моделирования гидроаэродииамических явлений.  [c.2]

Принято следующее построение книги. После кратких сведений об основных уравнениях динамики вязкой жидкости, граничных и начальных условиях (гл. 1) рассмотрены способы определения телового потока на стенке, коэффициента теплоотдачи и гидравлического сопротивления (гл. 2). Затем приведены необходимые для последующего анализа данные об изменении физических свойств жидкости и газа в зави-мости от температуры и давления (гл. 3). Рассмотрение общих вопросов заканчивается анализом течения и теплообмена в трубах методом подобия, и на этой основе дается классификация возможных случаев течения и теплообмена (гл. 4).  [c.3]


В формуле Бачинского выражена идея, согласно которой основное отличие жидкостей от газов состоит в том, что молекулы жидкости расположены более тесно. Эта идея является одной из важнейших и плодотворнейших для понимания соотношения свойств гкидкосгей и газов. Сходство этих свойств не исключает, однако, существования принципиальных различий и возможности одновременно указать на близость по ряду свойств н идкостей к твердым телам. Этот, другой, также плодотворный, подход к изучению жидкостей развил советский физик  [c.84]

Для определения локальных характеристик движения и теплообмена жидкостей и газов используются уравнения, следующие из основных физических законов сохранения массы, количества движения, энергии в сочетании с обобщенным законом вязкого течения Ньютона и законом теплопроводности Фурье. Это приводит к уравнениям неразрывности, движения и энергии, которые дополняются функциями свойств жидкости от температуры и давления. При отсутствии турбулентности в химически однородных однофазных изотропных средах полученная система уравнений является замкнутой. Эти уравнения справедливы и для описания мгновенных характеристик течения в пределах микромасщтаба турбулентного потока.  [c.230]

Механизм образования кипящего слоя сводится к следующему. Если через слой сыпучего материала продувать снизу газ, слой сначала будет разрыхляться, а при определенной скорости подачи дутья приобретает основные свойства жидкости — подвижность, текучесть, способность принимать форму и объем вмещающего сосуда и т. д. Такое состояние сыпучего материала называется псевдожид-ким или псевдоожиженным. Оно наступит при определенной критической скорости газового потока (W mm), при которой подъемная сила газового потока будет равной общей массе твердого материала.  [c.127]

Свойства твердых тел, жидкостей и газов обусловлены их различным молекулярным строением. Однако основной гипотезой механики жидкости и газа, как и многих других разделов механики, является гипотеза сплошной среды, в соответствии с которой жидкость нредс гавляетея континуумом, непрерывно, без пустот заполняющим пространство. Гипотеза сплошной среды подтверждается многочисленными экспериментами как при обычных условиях, так и при существенных отклонениях от нормальных условий,, цает возможность применять аппарат классических дифференциального и интегрального нсчислсннй, обосновывает понятие зна-  [c.8]

Обобщение метода подобия можно получить, рассматривая основные уравнения, описывающие рассматриваемый физический процесс и граничные условия. Выражение уравнения и фаничные условия используются чаще, чем просто уравнения для того, чтобы подчеркнуть, что граничные условия также должны быть одинаковыми, если одно или несколько уравнений входят а систему в дифференциальном виде, Для решения задач в рамках гипотезы континуума (движение жидкостей и газов, явления упругости, классический электромагнетизм, теплообмен и термодинамика) необходимо наряду с отношением характерных сил рассматривать отношения энергий. Так, чи JЮ Нуссельта представляет собой произведение отношения энергии, отношения сил и отношения физических свойств.  [c.78]

Третий раздел содержит сведения по составу, структуре и свойствам основных цветных металлов и сплавов на их основе. Приведены марки сплавов на основе алюминия, магния, титана, цинка, меди, никеля и указаны основные области их применения. С учетом экономической целесообразности широкого применения порошковых материалов даны характеристики материалов для подшипников скольжения, конструкционных, антифрикционных, фрикционных материалов, а также пористых фильтров тонкой 0ЧИСТЮ1 жидкостей и газов.  [c.3]

В последующих главах мы будем рассматривать распространение ультразвуковых волн в безграничной среде, которая обладает только объемной упругостью, но не имеет упругости формы и вязкости, т. е. является идеально текучей. В соответствии со сказанным в 6 гл. I, в такой среде, которой мы приписываем свойства идеальной сжимаемой жидкости, возможны лишь упругие деформации всестороннего сжатия, и, следовательно, в ней могут распространяться упругие волны только одного типа — волны сжатия (разрежения). Это существенно упрощает анализ возмущений и в то же время позволяет получить основные акустические соотношения для наиболее общего типа волн, которые могут существовать как в жидкостях (и газах), так и в твердых телах. В последних, как мы видели, возможны и другие упругие деформации, которым соотвег-ствуют иные типы волн, рассматриваемые ниже. Однако те соотношения, которые мы получим для волн сжатия в идеальной жидкости, будут справедливы и для других волн, поэтому в основных чертах они имеют общее значение для разных типов волн в различных средах. Реальные жидкости обладают некоторой упругостью формы. Такая упругость заметно проявляется лишь при очень больших скоростях деформации, значительно превышающих скорости, соответствующие ультразвуковым колебаниям самой высокой частоты, при которой они могут распространяться в жидкости без существенного затухания. Это дает основание считать скорости деформаций в ультразвуковой волне достаточно медленными, чтобы сдвиговой упругостью реальных жидкостей можно было полностью пренебречь.  [c.29]

Как вскоре будет выяснено, указанных двух основных свойств макромодели жидкости или газа — непрерывности и легкой по-дважноста — достаточно, чтобы установить основные уравнения равновесия и движения жидкости и газа.  [c.15]


Смотреть страницы где упоминается термин Основные свойства жидкостей и газов : [c.277]    [c.8]    [c.167]   
Смотреть главы в:

Основные свойства жидкостей и газов  -> Основные свойства жидкостей и газов



ПОИСК



ГИДРАВЛИКА Основные физические свойства жидкостей и газов

Газы, свойства

Жидкости, свойства) свойства)

Мер основные свойства

Основные газы

Основные свойства газов

Основные свойства жидкости

Основные физические свойства жидкостей и газов

Предмет механики жидкости и газа. Основные свойства жидкой и газообразной сред

Предмет механики жидкости и газа. Основные свойства макромодели жидкости и газа сплошность и подвижность

Свойства газов

Свойства газов и жидкостей

Свойства жидкостей

Свойство основное жидкости

Уравнение состояния ли — iJpoapa — сдаистера Вторые вириальные коэффициенты для смесей Правила смешения Правила смешения для смесей жидкостей ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Содержание главы Основные термодинамические принципы Функции отклонения от идеального состояния Вычисление функций отклонения от идеального состояния Производные свойства Теплоемкость реальных газов Истинные критические точки смесей Теплоемкость жидкостей Парофазная фугитивность компонента смеси ДАВЛЕНИЯ ПАРОВ И ТЕПЛОТЫ ПАРООБРАЗОВАНИЯ ЧИСТЫХ ЖИДКОСТЕЙ



© 2025 Mash-xxl.info Реклама на сайте