Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приборы для поляризационных измерений

Приборы для поляризационных измерений  [c.240]

Электрохимическое поведение металлов в зазорах можно в некоторых случаях изучать, создавая зазоры с помощью плексигласовой накладки. Например, измерять необратимые электродные потенциалы металла в зазорах можно обычным потенциометрическим методом и в условиях, когда исследуемый образец находится в накладке. Электрический контакт с образцом осуществляется посредством металлического стержня, ввинченного в образец и изолированного от воздействия коррозионной среды инертным лаком. Однако для поляризационных измерений необходим уже более совершенный прибор.  [c.212]


Для измерения разности хода и параметра изоклины, а также для наблюдения за общей картиной напряженного состояния модели используются специальные приборы — полярископы. Некоторые виды полярископов позволяют определять разность хода по методу сопоставления цветов и методу полос, другие—но методу компенсации. В последнем случае в полярископах в качестве дополнительного измерительного элемента используются компенсаторы. Кроме основных измерительных приборов для исследования напряжений поляризационно-оп-тическим методом необходимо различное вспомогательное оборудование, предназначенное для изготовления материалов, определения их оптико-механических свойств и нагружения моделей.  [c.98]

Прибор для производства таких измерений при комнатных и повышенных температурах приведен на рис. 131. Форма и устройство образца-электрода при снятии поляризационной кривой отличается от образца-электрода при измерении потенциалов.  [c.176]

Поляризационные приборы для измерения концентрации растворов оптически активных веществ основаны на явлении вращения плоскости поляризации прп прохождении через вещество плоскополяризованного пучка лучей. Поворот плоскости поляризации может быть измерен.  [c.223]

Благодаря этой зависимости концентрация раствора может быть легко определена по углу поворота плоскости поляризации. Если расположить кювету с исследуемым раствором между скрещенными поляризатором и анализатором, то в общем случае вследствие поворота плоскости поляризации поле зрения прибора будет светлым, а не темным. Поворачивая анализатор до тех пор, пока вновь не наступит максимальное потемнение поля, можно измерить угол поворота плоскости поляризации. Однако глаз человека гораздо чувствительнее к разности освещенностей полей сравнения. Поэтому в поляризационных приборах для измерения вращения плоскости поляризации применяют полутеневые устройства (рис. 148).  [c.224]

ПОЛЯРИМЕТРЫ, поляризационные аппараты, приборы для измерения вращения плоскости поляризации (см.). Для практики химич., технич., а также медицинского анализа наибольшее значение имеет вращение плоскости поляризации в жидкостях, и П. конструируются в виде приборов, приспособленных по преимуществу для жидкостей. Величина, подлежащая измерению в П., есть угол а поворота плоскости поля-  [c.160]


Исследования поляризационного сопротивления. Так называемое поляризационное сопротивление R = т Ц измеряют в линейной области поляризационной кривой, т.е. в непосредственной близости от потенциала коррозии (см. 2.7). Поляризационное сопротивление является мерой заторможенности коррозионного процесса и в данной системе обратно пропорционально току коррозии. Имеются промышленные инструменты для измерения поляризационного сопротивления. Измерения производят, используя два или три электрода, смонтированные вместе и образующие измерительный датчик. Результат может быть прочитан непосредственно на шкале прибора в единицах скорости коррозии.  [c.145]

Для измерения поляризационного потенциала выключают тумблер, при этом стрелка (или перо) прибора перемещаются. Показания прибора, соответствующие значению поляризационного потенциала, снимают в первый момент после остановки стрелки (пера). Рекомендуется продолжительность разрыва цепи "трубопровод-датчик" не более 2-3 с. Следующие показания вольтметра снимают через 10-15 с после включения тумблера.  [c.21]

Данная работа является практическим руководством по определению напряжений поляризационно-оптическим методом. Она состоит из шести глав, в которых изложены основы этого метода, описаны способы измерения величин напряжений и методы обработки результатов эксперимента для плоской и объемной задач в пределах упругости, свойства оптически чувствительных материалов и технология их изготовления, а также даны сведения о некоторых тинах поляризационных приборов и вспомогательного оборудования.  [c.5]

Компенсаторы предназначены для измерения разности хода в отдельных точках модели. Они применяются в основном с приборами типа КСП и ПК-6, а также в поляризационных микроскопах. К настоящему времени наи-  [c.104]

Электродные потенциалы измеряют не только на стационарных электродах, но и на вращающихся скорость вращения обычно поддерживают в пределах 30—500 рад/с. Для измерения электродного потенциала на вращающемся электроде используют прибор, который позволяет одновременно снимать поляризационные кривые [2].  [c.47]

В настоящее время уже сложились определенные методы, по которым идет развитие дефектоскопии с помощью полей СВЧ к ним можно отнести амплитудный, фазовый, поляризационный. Широкое распространение получил метод, основанный на измерении электрических параметров образца, помещенного внутрь волновода. Волноводный метод применим только для исследования образцов небольших размеров и только в лабораторных условиях [101]. Значительно большие возможности имеет метод, основанный на регистрации интенсивности прошедшей или отраженной радиоволны в свободном пространстве [115, 143, 145]. При этом просмотр всей поверхности изделия или конструкции осуществляется путем механического сканирования приемо-пере-дающего тракта прибора по его поверхности. Фиксация изображения производится на фотобумагу или фотопленку.  [c.61]

Рассмотрены теоретические основы метода измерения поляризационных характеристик металлов в электролитических средах с высоким омическим сопротивлением, а также метода разделения омической и поляризационной составляющих потенциала на изолированном электроде при поляризации пульсирующим током. Даются основные принципы построения приборов и установок для подобного рода исследований. Приводятся результаты изучения переноса реагирующих частиц через диффузионный слой на границе металл — электролит с использованием метода поляризации прямоугольным током низкой частоты. На примере исследования электрохимического поведения титана в растворах серной кислоты показано, что применение метода поляризации несимметричным переменным током обеспечивает получение дополнительной информации о кинетике образования пассивирующих слоев на поверхности металла.  [c.214]

Для измерения сдвига электрохимического потенциала испытательного электрода, возникающего под действием наложенного тока, как в полевых, так и в лабораторных условиях, целесообразно использовать способ заряда емкости в момент разрыва цепи поляризующего тока. Принципиальная электрическая схема измерений по этому способу показана на рис. 10, а. Схема состоит из трех функционально отличных блоков измерительного /, силового Я и переключения III. Функция измерительного блока I — измерение катодным вольтметром Р поляризационного потенциала испытательного электрода 6 по отношению к медносульфатному электроду сравнения ЕЪ. Катодный вольтметр Р1 может быть любого типа, но его внутреннее сопротивление должно быть не менее 10 МОм на 1В шкалы. Такое входное сопротивление прибора требуется для исключения влияния разряда емкости через измерительную цепь прибора. Емкость конденсатора С = О,. ..1 мкФ и зависит от размера контакта медного стержня с раствором в медносульфатном электроде 5. Следует выбирать наи- более высококачественные конденсаторы с наименьшим  [c.62]


Приборы для поляризационно-оп-тич. исследований отличает чрезвычайное разнообразие сфер применения, конструктивного оформления и принципов действия. Их используют для фотометрич. и пирометрич. измерений, кристаллооптич. исследований, изучения механич. напряжений в конструкциях (см. Поляризационно-оптический метод исследования напряжений), в микроскопии, в поляриметрии и сахариметрии, в скоростной фото- и киносъёмке, геодезич. устройствах, в системах оптической локации и оптической связи, в схемах управления лазеров, для физ. исследований электронной структуры атомов, молекул и тв. тел и мн др.  [c.574]

Степень поляризации зависит от характера анодных и катодных участков, состава коррозионной среды и плотности коррозионного тока. Чем бо.чьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальва-ностатическим способом подобна схеме для и.змерения электродных потешгиалов компенсационным методом н отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222.  [c.342]

РАХАРПМЕТР — поляризационный прибор ДЛЯ определения содержания сахаров (реже др.оптически активных веществ) в растворах по измерению угла вращения плос кости поляризации, пропорционального концентрации раствора. Компенсация вращения плоскости поляризации в С., в отлпчпе от поляриметра, производится ли-вейно перемещающимся кварцевым клином (рис.). При-  [c.421]

Полярископом пользуются для качественной оценки напряжений. Количественная оценка определяется поляризационными приборами — поляриметрами. Поляриметрические измерения основаны на том, что двойное лучепреломление, возникающее в стекле, пропорционально действующим в стекле напряжениям. Измерение напряжений в стекле с помощью поляриметров является трудоемкой операцией, поэтому в цеховых условиях для определения количе-ственой Оценки напряжений в стекле применяется полярископ, пере-  [c.116]

Исключение омической составляющей основано на прямо пропорциональной связи ее с поляризующим током в момент выключения тока она исчезает практически мгновенно. В то же время поляризационный потенциал, как величина, связанная с зарядом двойного электрического слоя на поверхности поляризуемого электрода, после выключения поляризующего тока, возвращается к первоначальному значению за какой-то конечный промежуток времени, т. е. значительно медленнее. Если разность потенциалов между электродами измерить сразу после отключения тока каким-нибудь безынерционным способом (например, электронным осциллографом), результат измерения будет мало отличаться от поляризационного потенциала. При использовании вольтметров с механическими инерционными указателями без накопительной емкости указатель после включения прибора все время движется и характер движения зависит от инерционных свойств подвижной системы прибора. Применение накопительного конденсатора позволяет стабилизировать движение указателей приборов с механическими инерционными системами и применить такие приборы для измерений в момент отклю-  [c.65]

А. Т. Ваграмян [22] предложил другой способ преодоления трудности определения истинной плотности тока при снятии поляризационных кривых. Сущность метода заключается в быстром и периодическом изменении плотности тока от нуля до максимального значения с одновременной записью изменения потенциала электрода. Высокая плотность тока позволяет равномерно покрывать электрод слоями свежеосаж-денного металла, так что можно считать, что осаждение происходит по всей поверхно сти катода. Вследствие высокой скорости измерения при таком методе можно пренебречь изменением величины поверхности в процессе электролиза. На основе этого принципа в лаборатории электроосаждения металлов был сконструирован -прибор для быстрого снятия поляризационных кривых. На рис. 24 представлена схема прибора и установки для быстрого снятия поляризационных кривых.  [c.40]

Для изучения кинети ки таких сопряженных электрохимических реакций поляризационные измерения проводятся в электролитических ячейках, снабженных специальными приспособлениями для собирания выделяющегося на электроде газа и предусматривающих возможность взвешивания электрода. На рис. 31 представлен довольно простой стеклянный прибор, который можно применять для измерения выделяющегося при электролизе водорода. Он состоит из четырех основных частей градуированной бюретки 1 для измерения объема газа, колокола 2 для собирания газа, который выделяется на находящемся под колоколом катоде, стеклянной трубки 3 для приведения объема газа к атмосферному давлению и трубки 4 для отвода вытесняемого из бюретки электролита.  [c.55]

Рассмотрим конкретные оптические системы с применением поляризационных элементов для точных измерений. На рис. 32.2 представлена оптическая и принципиальная фотоэлектрическая схемы прибора, который предназначен для контроля больших линейных размеров. Поляризатор и анализатор находятся на входе и выходе интерферометра. Пластинка Я/4 ориентирована диагонально по отношению к поляризатору Р. В схеме имеется неподвижная призма Рт и подвижная призма Р , с которой связан измеряемый объект. Источником света служит высокомонохроматическое излучение лазера (см. 3).  [c.242]


Пропускание, как видно из приводимых фигур, всегда связано с отраже-пнем света. Универсальным прибором, служащим для технич. измерений коэф-тов отражения и -Х пропускания, являотся у ни-метр, предложенный Блохом. Основной частью прибора (фиг. 28) является поляризационный фотометр. Измерение коэф-та рассеянного отражения производят, освещая дневным или искусственным рассеянным светом сравниваемую и исследуемую поверхности, помещенные рядом под вырезом прибора А. Затем делается второе измерение, где под вырезом находится только одна сравнительная пластинка. В а-  [c.95]

Приборы для измерения скорости коррозии с помощью измерения линейного поляризационного сопротивления выпускают серийно в ряде стран, так в странах Восточной Европы - приборы "Поларатрон" и "Поляр" (Чехословакия), ИРП-1 (Болгария).  [c.19]

Прибор для определения степени поляризации р частично поляризованного света (см. Поляризация света). Простейший такой П.— полутеневой П. Корню, предназначенный для определения степени линейной поляризации. Осн. элементами этого П. служат призма Волластона (см. Поляризационные призмы) и анализатор. Поворотом анализатора (шкала поворота проградуирована на значения р) уравнивают яркости полей, освещаемых пучками, к-рые лри выходе из призмы имеют неодинаковую интенсивность. Фотоэлектрический П. для измерения линейной поляризации состоит из вращающегося вокруг оптич, оси П. анализатора и фотоприёмника. Отношение амплитуд переменной составляющей тока приёмника к постоянной не-лосредственно даёт р. Поставив перед П. фазовую пластинку четверть длины волны (см. Компенсатор оптический, Поляризационные приборы), можно использовать его для измерения степени круговой (циркулярной) поляризации.  [c.578]

Измерениями толщины широко пользовались раньше специалисты по поляризационно-оптическому методу для определения суммы главных напряжений с целью последующего разделения главных напряжений. Ими для этого было разработано много тонких и точных приборов. Чтобы проиллюстрировать порядок измеряемых величин, предположим, что модуль упругости материала модели и коэффициент Пуассона при комнатной температуре соответственно равны 35 ООО кг см - и 0,4 и что сумма главных напряжений составляет 70 кгкм . По формуле (8.29) запишем  [c.220]

Значение эллипсометрических измерений неуклонно возрастает в связи с увеличением удельного веса изделий микроэлектроники в общем объеме производства приборов. Так, в тонкопленочной полупроводниковой электронике поляризационные оптические методы используются для определения толщин и показателей преломления тонких пленок на кремниевых и германиевых подложках. Относительная простота эллипсометрических методов позволяет проводить поляризационно-оптические измерения на любой стадии технологического процесса, а также исследовать кинетику процесса формирования тонких пленок.  [c.205]

Поляризационный К. о. нрименяется для анализа состояния поляризации света. Общий принцип устройства " превращение исследуемого света в свет, поляризованный линейно (при визуальных измерениях) или циркулярно (при фотоэлектрич. измерениях). При визуальных измерениях обычно применяют дополнит, полутсыевые устройства, благодаря которым измерение производится путёц уравнивания яркостей двух полей (см. Полу теневые приборы). Фотоэлектрические методы более быстры, удобны и точны [2].  [c.428]

В настоящее время имеются промышленные приборы, основанные на этом принципе. Например, измеритель скорости коррозии типа Р-5035, предназначенный для работы в кислых средах. На этом приборе скорость коррозии определяют путем измерения поляризационного сопротивления двухэлектродного датчика постоянного тока. Диапазон измерений сопротивления поляризации составляет 5-r- 5QQO Ом, Компенсация сопротивления раствора в пределах от О до 2000 Ом осуществляется наложением переменного тока частотой 10 кГц. Величина измеренного поляризационного сопротивления обратно пропорциональна скорости коррозии.  [c.52]

Если построить анодную поляризационную кривую для металла, который проявляет пассивность, то ее форма подобна представленной на фиг. 53. Когда плотность приложенного извне тока становится выше так называемой критической плотности тока, происходит скачок потенциала и кислород начинает выделяться на поверхности металла. Металл rtpn потенциале выше Л пассивируется и покрывается окисной пленкой. Интервал между потенциалами Л и 5 невозможно исследовать при гальваностатических условиях. Чтобы произвести измерения" в этой области, необходимо задавать не ток, а потенциал. Так как это важное различие, следует привести описание потенциостата — прибора, с помощью которого задается потенциал.  [c.109]

Время, затраченное на построение поляризационной кривой, оказывает влияние на результат. При анодной поляризации растворение может изменить шероховатость поверхности. В гальваноста-тических условиях произойдет изменение плотности тока, и, следовательно, сдвиг потенциала. При потенциостатических условиях требуемый для поддержания потенциала ток будет меняться. Помимо изменения шероховатости, вызываемо5 о анодным растворением, возможно накопление продуктов коррозии или другие поверхностные реакции, которые станут препятствовать построению поляризационной кривой. Изменение условий при любом отсчете будет влиять на регулировку контура в дальнейшем. В связи с этим важное значение имеет скорость измерения. На результат влияет также направление смещения потенциала. Применяются разнообразные многочисленные экспериментальные устройства, включая электронные приборы, позволяющие изменять потенциал во всем исследуемом интервале за миллисекунды. Это сложные проблемы, являющиеся предметом многих дискуссий и исследований. Сопоставление поляризационных кривых, полученных в различных условиях, зачастую очень затруднительно и должно выполняться с большой осторожностью.  [c.125]

За исключением явлений анодной пассивности и некоторых специальных случаев, большинство поляризационных кривых имеет сравнительно несложную форму и, следовательно, может быть построено с помощью более простого гальваностатичеоко-го способа. Не представляет больших сложностей и потенциоста-тический способ измерений, если не прибегать к специальным электронным потенциостатам — приборам, автоматически регулирующим заданные значения потенциала и позволяющим измерять соответствующие этим значениям силы поляризующего тока. Схема таких приборов сложна и в настоящее время не отработана окончательно, а получаемые результаты незначительно отличаются от тех, которые устанавливаются с помощью классического потенциостата [268]. Гальваностатический и по-тенциостатический методы снятия поляризационных кривых будут более подробно рассмотрены ниже, а сейчас обсудим те общие практически неизбежные трудности, которые снижают достоинство метода поляризационных кривых при исследовании коррозионных процессов или делают его полностью неприменимым. С этой целью рассмотрим отклонение реальных поляризационных кривых от идеальных для одного из наиболее часто встречающегося случая коррозии металлов в присутствии кислорода в нейтральных и слабокислых растворах [1, 52, 261]. В этих случаях идеальная кривая катодной поляризации имеет три характерных участка Л, В и С (рис. 99). Участок А показывает, что процесс катодной деполяризации при соответствующих силах коррозионного тока и значениях потенциала осуществляется за счет восстановления кислорода на локальных микрокатодах. Форма среднего участка кривой В определяется затруднением диффузии кислорода к микрокатодам. Верхний участок кривой С соответствует таким значениям силы коррозионного тока и потенциала, при которых катодный процесс начинает протекать за счет выделения водорода. Сложную форму идеальной кривой катодной поляризации можно рассматривать как последовательное сложение трех элементарных кривых I, II и III. Первая кривая может быть практически получена тогда, когда концентрация кислорода в растворе очень высока. В тех же случаях, когда достаточно велика концентрация ио-  [c.164]


Оптические методы НК разделяют на три группы. В первую группу входят визуальный и визуально-измерительный методы, которые являются наиболее простыми и доступными, имеют наибольшее распространение и обязательны для применения при диагностировании технических устройств и объектов всех типов. Ко второй группе относятся фотометрический денсиметрический, спектральный и телевизионный методы, которые основаны на результатах измерений с использованием электронных приборов. К третьей группе относятся интерферометрический, дифракционный, фазово-контрастный, рефрактометрический, нефелометриче-ский, поляризационный, стробоскопический и голографический методы, использующие волновые свойства света и отличающиеся наивысшей точностью измерения — с точностью до десятых долей длины волны излучения, — но сложностью в реализации.  [c.54]

Уинтерботтом [167, 169] описал усовершенствованный тип прибора Транстада, в котором используется поляризационный спектрометр с аналогичным расположением поляризатора, пластинки в четверть волны и анализатора. Кроме того, Уинтерботтом [633, 636 на основе строгой теории вывел выражение, связывающее толщину плевки с экспериментальны.ми значениями г и Д, измеренными с помощью его прибора. Вначале с помощью выражения, полученного из оптической теории, он определял по значениям tan и Д оптические постоянные для чистого металла. Затем он наносил значения tan и Д для чистого металла и для пленки на различных стадиях ее роста в полярных координатах, причем радиальной координатой являлся tan ф, а угловой — Д. После этого он подгонял к получившейся кривой различные теоретические кривые, построенные для заданных  [c.265]

Наконец, следует отметить, что поляризационные характеристики спектральных приборов также зависят от ширины входной щели. Так, в некоторых случаях при ширине 0,001 мм щель полностью поляризует проходящий свет, а при ее расширении поляризация резко спадает. Поляризационные свойства спектральных аппаратов различны для различных конструкций кроме того, они зависят еще и от длины волны, поэтому эти эффекты доляпгы приниматься во внимание при измерениях относительных интенсивностей по спектру.  [c.101]

Blvie TO двухлучевой дифференциальной схемы можно воспользоваться однолучевой схемой фотометра со стабилизацией излучения газоразрядной ртутной лампы по методу Широкова (см. рис. 216). Пользуясь этим приемом, в ГОИ Б.Я. Свешниковым и др. был сконструирован фотометр-поляриметр фотоэлектрического типа с фотоумножителем в качестве приемника. Схема прибора представлена на рис. 441. В качестве источника возбуждения фотолюминесценции использована ртутная лампа СВДШ-250, свет от которой через поляризационную призму Аренса П и светофильтр С, падает на кювету с раствором К. Измерение интенсивности люминесценции ведется в поперечном направлении через светофильтр и такую же призму-анализатор А. Перед фотоумножителем для исключения поляризационных эффектов на его катоде установлена пластина в четверть длины волны . Флуктуации в интенсивности наблюдались ниже 0,5%.  [c.574]

Измерение степени поляризации люминесценции в описанном приборе осуществляется при установке анализатора в двух положениях параллельно и перпепдикулярпо к плоскости колебаний электрического вектора. В случае недостаточной линейности световой характеристики приемника фотометрические измерения возможно проводить, используя поляризационные призмы как светоослабляющую измерительную систему. Для этого они должны быть  [c.575]


Смотреть страницы где упоминается термин Приборы для поляризационных измерений : [c.150]    [c.59]    [c.173]    [c.69]    [c.166]    [c.134]    [c.81]    [c.654]    [c.107]    [c.95]    [c.82]    [c.519]   
Смотреть главы в:

Синхротронное излучение и его применения  -> Приборы для поляризационных измерений



ПОИСК



Приборы поляризационные

Ток поляризационный



© 2025 Mash-xxl.info Реклама на сайте