Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лампы газоразрядные ртутные

Источники света могут излучать свет непрерывно и прерывисто, в виде серии вспышек или в виде единичной вспышки высокой интенсивности, продолжительностью в несколько мкс. При непрерывном освещении дискретность изображения на пленке получается с помощью оптико-механической схемы или же явление записывается в виде фотографического следа. В качестве непрерывных источников света используются вольфрамовые лампы и ртутные дуговые источники [37]. Прерывистое освещение используется в сочетании с камерами, имеющими непрерывно движущуюся пленку. Величину экспозиции определяет интенсивность вспышки источника света. Источники, дающие единичные управляемые вспышки света, можно использовать для камер с неподвижной пленкой, картина движения получается за счет кратковременности вспышки. Для освещения высокоскоростных процессов применяются газоразрядные трубки с холодным катодом. Такая трубка может давать одиночную вспышку или несколько вспышек подряд. Трубку поджигают разрядом конденсатора высокого напряжения, получается кратковременная вспышка света высокой интенсивности. Действие газоразрядной трубки с холодным катодом основано на следующем принципе. Напряжение от конденсаторов прилагают к главным электродам, однако вспышки газа не происходит до тех пор, пока на третий (пуско-  [c.27]


Для целей общего освещения за последние годы значительно расширены ассортимент и объемы производства наиболее экономичных источников света — газоразрядных ламп, к которым относятся люминесцентные лампы, дуговые ртутные лампы с исправленной цветностью (ДРЛ), ртутные лампы с йодидами металлов, натриевые лампы высокого давления и др. Из года в год увеличивается доля светового потока газоразрядных ламп, которая в 1975 г. составит около 70%.  [c.3]

В газоразрядных. ртутных лампах с иодидами металлов галлий применяется в качестве излучающей добавки, а в редкоземельных люминофорах. входит в основу  [c.93]

Светильники для ламп накаливания, люминесцентных и газоразрядных (ртутных) ламп и сигнальных устройств  [c.431]

Ртуть применяют в качестве жидкого катода в ртутных выпрямителях, в ртутных лампах и газоразрядных приборах, в лампах дневного света, а также для ртутных контактов в реле и др.  [c.35]

Разработаны и внедрены в практику высокоэффективные лампы для наружного освещения, разные типы газоразрядных трубок, лампы с йодным циклом, импульсные лампы и специальные ртутные лампы высокого давления для киносъемок и т. п.  [c.143]

Основной областью применения источников света является искусственное освещение, на которое в стране ежегодно расходуется 8—10% вырабатываемой электроэнергии. Для эффективной переработки таких громадных количеств электроэнергии в энергию излучения необходимы рациональные источники света. Поэтому за последние годы получили широкое распространение газоразрядные источники света — люминесцентные и ртутные дуговые лампы, натриевые лампы высокого давления и другие, обладающие значительно большей экономичностью, чем лампы накаливания. Так, доля светового потока газоразрядных ламп от всего вырабатываемого светового потока в 1973 г. составила 62% по сравнению с 24% в 1965 г.  [c.5]

Ртутно-кварцевые лампы с давлениями 0,3—1,0 МПа. Лампы состоят из кварцевых газоразрядных трубок с впаянными по концам основными и зажигающими электродами (рис. 1-5,в). Газоразрядная трубка заключается в стеклянную колбу.  [c.22]

Другим массовым типом газоразрядных ламп являются дуговые ртутные лампы с исправной цветностью типа ДРЛ,  [c.442]

Для восстановления изображения с голограмм с минимальными искажениями и максимальным разрешением в общем случае требуется, чтобы восстанавливающий источник имел те же длины волн, когерентность, направление распространения и расходимость, что и опорный пучок при записи голограмм. В зависимости от назначения и дальнейшего использования восстановленного изображения требования к когерентности и длине волны излучения могут быть в значительной степени снижены. Если, например, голограмма отражательная и используется непосредственно для визуального восприятия, то для ее восстановления обычно применяют источники некогерентного белого света, например лампы накаливания или дуговые лампы. Достаточно высокое разрешение при восстановлении монохроматических изображений глубоких объектов, соразмерных с голографической пластиной, получается при использовании ртутных шаровых газоразрядных ламп, имеющих линейчатый спектр и разрядный промежуток менее 0,5 мм. В случае пропускающих голограмм, в том числе голограмм сфокусированного изображения, применимы лазеры и источники монохроматического некогерентного света, причем к лазерам не предъявляется требований работы в одномодовом и одночастотном режиме (см. главу 1.4).  [c.36]


Для восстановления цветных голографических изображений применимы ксеноновые и циркониевые лампы. Очень интересна ртутно-кадмиевая лампа, имеющая линейчатый спектр, содержащий линии красного, желтого, зеленого и синего излучений. Но такие лампы пока известны только в виде экспериментальных опытных образцов. В табл. 6 и 7 приведены параметры газоразрядных и галогенных ламп. Общин вид различного вида ламп показан на фото 6.  [c.55]

Искусственное освещение может выполняться газоразрядными (люминесцентными) лампами, а также ртутными лампами типа ДРЛ и ДРИ.  [c.377]

Для излучения спектра в ультрафиолетовой области применяют газоразрядные (в большинстве случаев ртутные) лампы высокого и сверхвысокого давлений. В источниках, излучающих энергию преимущественно в какой-либо одной области спектра, необходимо подбирать состав и давление газа и силу пускового тока.  [c.344]

Люминесцентные лампы низкого давления являются массовыми из выпускаемых в СССР газоразрядных источников света, в которых ультрафиолетовое излучение ртутного разряда преобразуется в видимое  [c.9]

Расширяющееся в последнее время применение в осветительных установках газоразрядных ламп и их большой расход ставят на повестку дня чрезвычайно важный вопрос о возможности ртутных отравлений  [c.174]

Устройство 2 кн. 303—304 Лампы ртутные газоразрядные — Излуча-  [c.319]

Для градуировки в видимой области по линейчатым спектрам используем газоразрядные спектральные лампы — ртутные, ртутно-кадмиевые, кадмиевые и др. Для градуировки в инфракрасной области по полосам поглощения используют спектры поглощения следующих веществ полистирола, неодимового стекла, хлороформа и др.  [c.482]

Стекло широко применяется в различных областях народного хозяйства. Из стекла изготовляют колбы различных форм и размеров для электрических, ртутных, люминесцентных и газоразрядных ламп, цветные, бесцветные, прозрачные и непрозрачные светофильтры, специально закаленные стекла — так называемый сталинит для остекления автомашин и самолетов и др.  [c.742]

Ртуть применяют в качестве жидкого катода в ртутных выпрямителях, в ртутных лампах и газоразрядных приборах, для ртутных контактов в реле, для ртутных электродов при измерении электрических свойств твердых диэлектриков и в ряде случаев лабораторной практики.  [c.270]

Индий. Индий применяется как составная часть в амальгамах для люминесцентных ламп, в качестве излучающей добавки в газоразрядных ртутных лампах с иодвдами металлов и др. Индий и его сплавы являются превосходными низкотемпературными припоями, особенно для нанесения тонких пленок на стекло, кварц и керамику расплавленный индий хорошо смачивает стекло и способен проникать в тонкие слои металлов, предел прочности таких соединений при растяжении составляет 3,4-10 Па и обеспечивает хороший электрический контакт.  [c.91]

Таллий. Таллий применяется для катодов газоразрядных источников света, в качестве излучающих добавок в газоразрядных ртутных лампах с йодидами металлов, а также как составляющая сплавов со ртутью в термометрах для 1НИЗКИХ температур (6% таллия снижают температуру затвердевания ртути до —50°С).  [c.94]

В системах голографического кинематографа с квазисфокуси-рованными голограммами возможно применение газоразрядных ртутных и ртутно-кадмиевых ламп в качестве источников света при кинопроекции. При этом снижается резкость изображения вследствие нарушения гомоцентричности и монохроматичности восстанавливающих пучков.  [c.223]

Кроме газоразрядных ртутных люминесцентных ламп появились люминесцентные конденсаторные ламны, использующие явление электролюминесценции кристаллофосфоров ).  [c.276]

Blvie TO двухлучевой дифференциальной схемы можно воспользоваться однолучевой схемой фотометра со стабилизацией излучения газоразрядной ртутной лампы по методу Широкова (см. рис. 216). Пользуясь этим приемом, в ГОИ Б.Я. Свешниковым и др. был сконструирован фотометр-поляриметр фотоэлектрического типа с фотоумножителем в качестве приемника. Схема прибора представлена на рис. 441. В качестве источника возбуждения фотолюминесценции использована ртутная лампа СВДШ-250, свет от которой через поляризационную призму Аренса П и светофильтр С, падает на кювету с раствором К. Измерение интенсивности люминесценции ведется в поперечном направлении через светофильтр и такую же призму-анализатор А. Перед фотоумножителем для исключения поляризационных эффектов на его катоде установлена пластина в четверть длины волны . Флуктуации в интенсивности наблюдались ниже 0,5%.  [c.574]


Значительно большие возможности повышения коэффициента полезного действия дают газоразрядные источники света. Например, ртутные лампы высокого давления имеют в 3—4 раза более высокую экономичность, чем лампы накаливания, и более длительный срок службы. Коэффициент полезного действия натриевого разряда низкого давления достигает при определенных условиях высоких значений, составляющих 60—70 % подводимой электрической мощности. Однако, несмотря на значительно более высокий коэффициент полезного действия, эти лампы обладают существенным недостатком, связагг-ным с линейчатым характером спектра излучения, сильно искажающим цветопередачу.  [c.154]

Новый этап в развитии газоразрядных источников света связан с созданием люминесцентных ламп. Применение люминофоров, преобразующих ультрафиолетовое излучение ртутного разряда низкого давления в видимое излучение, позволило впервые создать газоразрядные источники света, дающие излучение с непрерывным спектром практически любого состава и обладающие световой отдачей и сроком службы, в несколько раз превышающими эти характеристики ламп иакаливамня. Люминофор подбирают таким образом, чтобы его свечение восполняло недостаток спектрального состава газового свечения. В результате получается источник, состав излучения которого приближается к солнечному (лампы дневного света). Они имеют световую отдачу до 40—  [c.154]

Ртуть применяют в качепве жидкого катода в piyTUbix выпрямителях, в ртутных лампах п газоразрядных приборах, в лампах дневного света, а также используют для ргугных контактов в реле п т. п.  [c.219]

Оптическая система установка ИМАШ-18 состоит из объектива 11 с большим рабочим расстоянием, укрепленного на опак-иллюминаторе 12 специального металлографического микроскопа. В осветителе микроскопа 13 применена ртутная газоразрядная лампа сверхвысокой яркости типа ДРШ-100-2 мощностью 100 Вт. Яркость свечения жгута паров плазмы в этой лампе составляет около 100 кстб. Следует напомнить, что яркость электрической дуги составляет всего около 15 кстб. Визуальное наблюдение за структурой образца осуществляется через окуляр 14 и монохроматический узкополосной светофильтр 15. Последний является одним из важных элементов оптической системы [58]. Он пропускает преимущественно волны с длиной X = 546 мкм (ртутная линия в спектре лампы) и срезает собственное световое излучение образца, а также волны других длин из спектра лампы. При этом становится возможным прямое наблюдение за микроструктурой образца в отраженном свете, а также фотографирование или киносъемка ее камерой 16.  [c.138]

Основным элементом камер, имитирующих солнечное излучение, являются источники света, в качестве которых применяют ртутно-кварцевые лампы с вольфрамовой нитью накала ИГ инфракрасного излучения и лампы ПРК ультрафиолетового излучения. Ультрафиолетовое излучение может быть также получено с помощью газоразрядных ламп, в которых возникает электрический разряд в атмосфере паров ртути, находящихся при различных давлениях. Существуют ртут-  [c.512]

Газоразрядные И. о, п, п н з к о г о давления (р 20 кПа) в зависимости от плотности тока на катоде /к работают в режиме тлеющего или дугового разряда. В индикаторны х лампах и панелях, обычно наполняемых смесью Ne с Пе и Аг, используется тлеющее свечение, локализованное вблизи катода (Lj,= 10 —10 кд/м ). Трубчатые лампы с парами Hg (рн= Ю Па) и Na (р ь=0,2 Па) в положительном столбе разряда излучают в резонансных линиях Hg (А,= 253,7 184,9 нм) и Na (Я = 589,0 589,6 нм) до 80% вводимой мощности, благодаря чему достигаются большие кпд и г . Вследствие малых токов их мощность Р ВО и 500 Вт соответственно, а срок службы доходит до 15 ООО ч. Натриевые лампы имеют самую высокую т (до 170 лм/Вт), но из-за плохой цветопередачи применяются только для наружного освещения и сигнализации. Ртутные люминесцентные ламны широко используются для внутреннего и декоративного освещения. На внутр. поверхность их стеклянной трубки 0 (1,7—4)Х (13—150) см наносится слон люминофора, преобразующий резонансное излучение Hg в видимую область со спектральным составом излучения, близким к дневному свету (Тс= = 2700—6000 К, до 80 ккд/м до 90 лм/Вт) или определённой цветности. Эритемные (люминесцентные с Х=280—400 нм) и бактерицидные лампы, излучающие с Х=253,7 нм через стенку колбы из увнолевого стекла, используются D медицине и биологии.  [c.222]

Источники У, и. Излучение накалённых до темп-р 3000 к твёрдых тел содержит заметную долю У. и. непрерывного спектра, интенсивность к-рого растёт с увеличением темп-ры. Более мощный источник У. и.— газоразрядная и высокотемпературная плазма. Для разл. применений У. и. используют ртутные, ксеноновые и др. газоразрядные лампы, окна к-рых (либо целиком колбы) изготовляют из прозрачных для У. и. материалов (чаще из кварца). Интенсивное У. и. непрерывного спектра испускают электроны в ускорителе (см. Синхротронное излучение). Для УФ-области существуют лазеры (найм, длину волны испускает лазер на переходах в никелеподобном ионе Я = 4,318 нм).  [c.221]

Для питания светильников общего освещения Для питания специальных яамп [ксеноновых, ДРЛ, ДРИ (дуговых ртутных с йодидами металлов), натриевых, рассчитанных на напряжение 380 В] и пускорегулирующих аийаратов для газоразрядных ламп, имеющих специальные схемы (например, трехфазных) с последовательным соединением ламп  [c.409]

На автоматах производится вакуумная обработкй наиболее массовых типов газоразрядных источников света люминесцентных (прямых, U-образных, кольцевых, малогабаритных и др.), дуговых ртутных ламп с исцрав-  [c.420]


Успешное применение металлического тория в таких газоразрядных трубках, как ртутная лампа высокой ннтенсннности, описанная Фрименом [22], иллюстрируется табл. 7. Электроды этих ламп представляют собой  [c.814]

Для питания специальных ламп [ксе-ноновых, ДРЛ, ДРИ (дуговых ртутных с йодидами металлов), натриевых, рассчитанных на напряжение 3S0 В] и пускорегулирующих аппаратов для газоразрядных ламп, имею- 380  [c.468]

В целом можно сказать, что комбинированный симметричный объектив с дифракционной асферикой довольно ограничен по своим возможностям. Силовым элементом в нем будет мениск с равными радиусами, который при небольшой толщине ввиду значительной кривизны поверхностен (требуемой для получения заданной оптической силы) не способен обеспечить значительного апертурного угла, т. е. высокого разрешения. При аномальном увеличении толщины мениска (di > г), добиваются высокого разрешения на оси системы, однако в этом случае входной зрачок объектива расположен вблизи предметной плоскости, в результате чего при отходе от оси резко возрастает угол между главным лучом и нормалью к поверхности мениска. Это приводит к росту аберраций высших порядков и уменьшению рабочего поля. Так, при габаритном размере системы L = 810 мм, что совпадает с габаритным размером симметричного двухлинзового дифракционного объектива при фокусном расстоянии каждой ДЛ f = 270 мм, и разрешении б = = 3 мкм на длине волны = 441,6 нм удается получить рабочее поле диаметром всего лишь 16 мм (ср. с данными табл. 4.6). Если не предъявлять высоких требований к разрешению и рабочему полю, комбинированный, триплет с дифракционной асферикой не лишен положительных качеств его светопропускание может быть обеспечено на уровне обычного рефракционного объектива, а хроматизм позволяет использовать излучение газоразрядных приборов, например типа ртутной лампы высокого давления (см. гл. 6).  [c.168]

Рнс. 29. Излучение галогенных и газоразрядных лампг 1 — ксе-ноновая лампа мощностью 150 Вт 2 — галогенная лампа мощностью 100 Вт 5 — ртутная лампа мошностью 200 Вт по вертикали — спектральная плотность излучения на расстоянии 50 см (мкВт/см2)  [c.53]

Открытие Габора опередило на 10 лет создание когерентных источников света — лазеров. Начальный этап развития голографии, создание первой голографической системы Габора и эксперименты по записи основных го юграмм и восстановлению изображений проходили с помощью обычных источников света непрерывного излучения. До создания лазера когерентный свет получали с помощью газоразрядных лама, излучавших отдельные узкие спектральные линии. Соответствующим светофильтром выделялась требуемая линия излучения, и сконцентрированный пучок света направлялся через очень маленькое круглое отверстие. Путем такой частотной и пространственной фильтрации удалось получить световую волну с такой степенью когерентности, которая позволила продемонстрировать запись и восстановление голограммы. Габор в своих экспериментах применял ртутные дуговые лампы высокого давления. Для получения достаточной пространственной н временной когерентности он использовал точечное отверстие диа.метром около 1 мкм и с помощью узкополосного светофильтра выделял зеленую линию спектра.  [c.6]

По рабочему давлению рассматриваемые газоразрядные лампы делятся на лампы низкого давления до 10 Па и высокого от 3-10 до 16 Па. Типичными представителями газоразрядных ламп низкого давления являются люминесцентные лампы, а высокого — дуговые ртутные лампы высокого давления с исправленной цветностью типа ДРЛ, металлогалогенные лампы типа ДРИ, натриевые лампы высокого давления типа ДНаТ и трубчатые ксеноновые лампы типа ДКсТ. Все перечисленные типы ламп выпускаются отечественной промышленностью и нашли свое применение в установках наружного освещения.  [c.9]

Дуговые ртутные лампы высокого давления исправленной цветности (ДРЛ) являются в наружном освещении наиболее массовыми газоразрядными источниками света. Основой лампы ДРЛ (рис. 1.1, в) является разрядная трубка 1 из прозрачного кварцевого стекла, по концам которой впаяны активированные самокалящиеся электроды 2. Внутрь трубки после тщательной откачки газов вводятся дозированное количество ртути и инертный газ (обычно аргон), который служит для облегчения зажигания разряда и защиты электродов от распыления в начале стадии разгорания лампы.  [c.10]

Металлогалогенные лампы представляют новое поколение газоразрядных ламп высокого давления, имеют жесткие требования по дозировке, чистоте материалов и соблюдению технологии при изготовлении. В табл. 1.4 приведены основные параметры выпускаемых СПО Светотехника ламп типа ДРИ (дуговая, ртутная, с излучающими добавками) общего назначения.  [c.13]

Из формулы (3.6) ясно, что допплеровская ширина контура линии суш,ественно зависит от массы грамм-атома и температуры разряда. Например, если температура разряда Т 5000 °С (дуговой эазряд), а электроды медные (Си = 63,54), то для X 510,6 нм 26Я/) = 0,003 нм. Для ртутных газоразрядных ламп эта цифра будет меньше, так как меньшее значение будет иметь температура эазряда, а М — большее.  [c.29]

Современные светолучевые осциллографы обычно выполняются многоканальными (с числом каналов 8—64). В качестве источников света применяются газоразрядные точечные лампы, ртутные лампы сверхвысокого давления, кинопроекционные и др. Наибольшее распространение в качестве носителей получили ленты фотобумаги или фотопленок различной ширины, требующие химического проявления после записи. Недостатком таких носителей является то, что при обработке в жидких проявителях и закрепителях возникает большая механическая усадка светочувствительных лент до 3—4%. Меньшие искажения записи обеспечиваются при использовании аммиачной бумаги, обрабатываемой в парах аммиака без увлажнения (усадка до 0,05%), и бумаги, чувствительной к ультрафиолетовым лучам проявление которой Госуществляется последующей засветкой рассеянным дневным или искусственным светок (усадка полностью отсутствует).  [c.148]


Смотреть страницы где упоминается термин Лампы газоразрядные ртутные : [c.196]    [c.222]    [c.518]    [c.31]    [c.55]   
Производство электрических источников света (1975) -- [ c.20 , c.125 , c.148 ]



ПОИСК



V газоразрядная —

Лампа ртутная

Лампы газоразрядные

Лампы ртутные газоразрядные — Излучательная способность 1 кн. 159—160 Технические характеристики

ПАР РТУТНЫЙ



© 2025 Mash-xxl.info Реклама на сайте