Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дипольный и квадрупольный электрические моменты

Электрический дипольный и квадрупольный моменты ядра  [c.125]

До сих пор мы почти совсем не обращали внимания на магнитные взаимодействия ядерных спинов, с электронными токами и на их электростатические взаимодействия с электронными зарядами. Поскольку ядра обладают магнитными моментами, то они чувствительны к магнитным полям, создаваемым спинами и орбитальными токами электронов. Атомные ядра не обладают электрическими дипольными моментами по причинам, которые будут вскоре рассмотрены, и поэтому нечувствительны к неоднородным электрическим полям. Однако они могут обладать квадрупольными электрическими моментами, на которые существенно влияют неоднородные электрические поля (в частности, создаваемые электронными облаками), приводя к появлению заметных вращательных моментов. Связывая электронную систему с системой ядерных спинов, эти взаимодействия могут проявляться при изучении любой из упомянутых систем.  [c.156]


Основную роль в сверхтонком расщеплении уровней играет взаимодействие электронов с мультиполь-ными моментами ядра наинизших порядков — магнитным дипольным и электрическим квадрупольным моментами. В первом приближении моменты J и 1 можно считать сохраняющимися и тогда полная энергия уровня записывается в виде суммы [71  [c.839]

Напомним, что существование у ядер и элементарных частиц электрического дипольного и магнитного квадрупольного моментов запрещено законами инвариантности относительно инверсии координат и отражения времени (см. 4, п. 5).  [c.77]

Хорошая модель должна, во-первых, объяснять свойства основных состояний ядер (спины, четности, магнитные дипольные и электрические квадрупольные моменты и т. д.), во-вторых, объяснять свойства возбужденных состояний и прежде всего спектр возбуждения ядра и, в-третьих, описывать динамические свойства ядра, например, вероятности испускания у Квантов отдельными возбужденными уровнями ядра. Ясно, что любая модель не может дать полного описания ядра. Поэтому в ядерной физике приходится использовать большое число моделей, приспособленных для описания того или иного круга явлений.  [c.82]

Электрические свойства М. Молекула как система полошит, и отрицат, зарядов характеризуется опре-дел. расположением зарядов, т. е. обладает электрич. дипольным, квадрупольным и т. д. моментами. Определяет электрич. свойства М. её дипольный момент ц .  [c.190]

В обычных условиях в веществах, встречающихся в природе, атомные ядра не ориентированы. Для получения О, я. разработаны спец, методы, основанные на наличии у ядер магнитных дипольных и электрических квадрупольных моментов, ориентационно жёстко связанных с ядерными спинами. При наложении на ядра магн. поля Н взаимодействие поля с магн. моментом ядра р будет стремиться ориентировать р в направлении Н, т. е. поляризовать систему ядер. Если ядра находятся в неоднородном электрич. поле, то его взаимодействие с квадрупольным электрич. моментом ядра О будет приводить к выстраиванию ядерных спинов. Оба эти взаимодействия используются в статич. методах, когда ядерные спины находятся в тепловом равновесии с веществом образца. Если ср. энергия теплового движения превышает энергию взаимодействия ядерного момента с полем, то ориентирующее действие поля в значит, степени подавляется тепловым движением. В связи с малостью ядерных моментов значит, ориентацию ядерных спинов статич. методами удаётся получить лишь при очень низких темп-рах и в очень высоких полях. Так, при практически предельно достижимых 7 10 2 К и // 10 Тл поляризация и выст-  [c.470]


С физической точки зрения это разложение весьма удобно в случае локализованных волновых функций. Такими функциями описываются валентные электроны молекул жидкостей и газов, групп молекул в твердых телах и локализованных парамагнитных ионов. Матрицу плотности можно разложить в комбинированный ряд по степеням Е, Н и УЕ. Средние значения электрического дипольного момента, магнитного дипольного момента и электрического квадрупольного момента можно представить в виде суммы фурье-компонент, каждой из которых соответствует комбинированный ряд по степеням амплитуд электрического и магнитного поля и их градиентов. Эта процедура не представляет принципиальных трудностей, но довольно громоздка. Члены, связанные с магнитным дипольным и электрическим квадрупольным моментами, описывают генерацию второй гармоники в кристаллах с центром инверсии экспериментально этот эффект наблюдался в кальците. Полный перечень всех квадратичных членов для электрического диполя, магнитного диполя и электрического квадруполя недавно был дан Адлером [13].  [c.79]

Для экспериментального измерения внешних квадруполь-ных моментов используются те же методы, что и для измерения магнитных дипольных моментов, т. е. изучение сверхтонкой структуры оптических спектров и радиочастотные резонансные методы. Взаимодействие квадрупольного момента с градиентом внутриатомного электрического поля определенным образом нарушает правило интервалов (2.17), что и дает возможность отделить расщепление уровней, связанное с наличием квадрупольного момента у ядра, от эффектов, обусловленных ядерным магнитным моментом.  [c.67]

Электрический дипольный момент нейтрона был бы точно равен нулю, если бы имела место инвариантность всех взаимодействий относительно операции отражения времени (см. гл. VII, 2). В действительности слабые взаимодействия неинвариантны относительно обращения времени (см. гл. VII, 8). Поэтому, вообще говоря, нейтрон должен обладать некоторым электрическим дипольным моментом. Высших мультипольных моментов, например, электрического квадрупольного, у нейтрона быть не может из-за слишком малого значения его спина (гл. II, 4). Более тонкие детали электрической и магнитной структуры нейтрона рассмотрены в гл. VII, 7.  [c.531]

Поскольку магнитный дипольный момент — аксиальный вектор, его компоненты имеют те же типы симметрии, что и компоненты вращения Нх, Ву, В г (приложение I). Электрический квадрупольный момент — тензор, компоненты которого ведут себя подобно компонентам поляризуемости, т. е. как произведение двух трансляций. Следовательно, можно пользоваться данными табл. 55 тома II ([23], стр. 274) для типов симметрии составляющих хж, < х(/,. ... Например, для симметричных линейных молекул (точечная группа 1)ос ) компоненты магнитного дипольного момента относятся к типам симметрии и П , а компоненты электрического квадрупольного момента — к типам симметрии Е , Пg, Ад. Следовательно, для того чтобы данный переход был разрешенным для магнитного дипольного излучения, произведение электронных волновых функций верхнего и нижнего состояний должно относиться к тинам 2 или П . Так, при поглощении из полносимметричного основного состояния могут происходить переходы 2 — 2 , П — 2 . Аналогично нри переходах, разрешенных для электрического квадрупольного излучения, произведение волновых функций должно относиться к одному из типов симметрии 2 , П , или А . При поглощении из полносимметричного основного состояния могут иметь место переходы 2 — 2 , Пд — 2д и Ай — 2 .  [c.134]

Поскольку кристалл электрически нейтрален и р(г) имеет периодичность решетки Бравэ, каждая элементарная ячейка должна также быть электрически нейтральной, а, следовательно, = 0. Кроме того, в кристалле с центром инверсии полный дипольный момент ячейки Вигнера — Зейтца равен нулю. В силу кубической симметрии равен нулю ) и коэффициент при 1/г (квадрупольный потенциал), а поскольку симметрия относительно инверсии требует обраш ения в нуль также и коэффициента при Иг, мы можем заключить, что вклад ячейки Вигнера — Зейтца в потенциал v (г) очень быстро (как 1/г ) спадает на больших удалениях от ячейки.  [c.355]


Электрические и магнитные моменты ядер. В каждом из возможных состояний я. а. имеет определ. значения магн. дипольного момента и квадрупольного электрического момента (см. Квадрупольпрш момент ядра). Статич. магн. момент может быть отличен от О только в том случае, когда спин ядерного состояния / 0, а статич. квадруполь-ный момент может иметь ненулевое значение лишь при /> V2- Ядерное состоян с определ. чётностью не может иметь отличного от нуля электрич, дипольного момента ( 1), а также др. электрич. моментов ЕХ нечётной муль-типольности X и статич. магн. моментов MX чётной муль-типольности X. Существование ненулевого электрич. дипольного момента Е запрещено также инвариантностью относительно обращения времени (Г-инвариантность). Поскольку эффекты несохранения чётности и нарушения Г-инвариантности очень малы, то дипольные электрич. моменты ядер или равны О, или очень малы и пока недоступны для измерения.  [c.687]

При переходе молекул из одних энергетических состояний в другие происходит перераспределение электронной и ядерной плотности, т. е. изменение электрических и магнитных дипольных и квадрупольных моментов молекул. По этим моментам существует еще одна классификация спектров. Оптические спектры практически все связаны с электрическими дипольными переходами, а магнитные дипольпые и электрические квадрупольные переходы наблюдаются главным образом методами радиоспектроскопии (в этой же области проявляются и электрические диполь-ные переходы). В 10 рассмотрены правила отбора для электрических дипольпых переходов.  [c.50]

В работе [50] проведен полуклассический расчет с использованием принципа соответствия. В качестве центров рассеяния приняты квантовые системы — водородоподобные одноэлектронные атомы (без учета влияния спина), причем учитываются электрически и магнитоди-польные и электрически квадрупольный моменты. Фигурирующая в выражении классической электродинамики для поля подобного излучателя плотность тока у рассматривалась как шредингеровская плотность тока в атомной системе. Значение этой плотности вычислялось методом теории возмущений (для отдельного атома, возмущаемого падающей волной Е), с учетом вероятностей дипольных и квадрупольных переходов. Изложенная выше общая схема дальнейших расчетов сохранена полностью, применяется теорема погашения. При расчете взаимодействия с полем автор ограничивается линейной локальной электродинамикой.  [c.128]

Y-Лучи, испускающиеся ядром при переходе в низшее энергетическое состояние, могут уносить различный момент количества движения I. Излучение, уносящее момент количества движения / = 1, называется дипольным, / = 2 — квадрупольным, I = 3 — октупольным и т. д.. Каждое из них характеризуется определенным характером углового распределения. Кванты различной мультипольности возникают в результате различных колебаний ядерной жидкости электрических (дипольные, квадрупольные и т. д.) и магнитных (дипольные, квадруполь-ные и т. д.).  [c.166]

Внешнее электрическое поле ориентирует молекулы, обладающие электрическим моментом (дипольным, квадрупольным и т. п.), в результате возникает анизотропия и показатели преломления пц(вдоль поля) и п 1 (перпендикулярно полю) становятся различными 11 —п =КпЕ , разность хода необыкновенного и обыкновенного лучей равна = Кп1Е , здесь К — постоянная Керра, м /В , п — показатель преломления в отсутствие поля, I — длина оптического пути, м Е — напряженность электрического поля, В/м.  [c.872]

L = 3. В соответствии с только что сказанным электрические диполь и октуполь, а также магнитный квадруполь — нечетны, в то время как магнитные диполь и октуполь, а также электрический квадруполь — четны. Для обозначения v полному моменту L. Например, электрический дипольный квант обозначается через 1, магнитный дипольный — через М, электрический квадрупольный — через 2, и т. д.  [c.163]

В заключение настояш.его параграфа мы еще кратко остановимся на вероятности квадрупольного и магнитно-дипольного излучения, В обш.ем случае момент атома может быть разложен в ряд, где первый член соответствует электрическому дипольному моменту, а второй — электрическому квад-рупольному и магнитному дипольному моментам, Следуюш,ие члены соответствуют моментам еш.е более высоких переходов. Изменение со временем этих моментов также ведет к излу-  [c.427]

Правила отбора зависят от 1) свойств симметрии волновых функций состояний, между которыми происходит переход, 2) оператора перехода (электрического или магнитного дипольного или квадрупольного моментов перехода, одно- или двухквантовых переходов) и его симметрии.  [c.51]

Если рассматривать взаимодействие между электромагнитным полем излучения и различными электрическими и магнитными моментами молекулы, то наиболее сильно взаимодействуют между собой электрическая компонента поля и электрический ди-польный момент. Соответственно высоки и вероятности переходов, связанных с изменением электрического дипольного момента молекулы. Они на 5—8 порядков выше, чем вероятности остальных переходов, при которых изменяются магнитные дипольпые и электрические квадрупольные моменты. Поэтому при изучении оптических спектров наблюдаются практически спектральные линии, обусловленные только электрическими дипольными переходами. Однако в длинноволновой области спектра (радиодиапазоне) интенсивности всех трех типов спектров становятся сравнимы.  [c.55]


Резонансные эксперименты дали большое количество информации о строении молекул, атомов и ат. ядер. Были измерены спмкы, магн. дипольные и электрич. квадрупольные моменты ядер. В частности, был обнаружен электрический квадрупольный момент дейтрона, исследована тонкая структура ат. спектров, в результате чего был открыт лэмбовский сдвиг. Измерение постоянной тонкой структуры дало пока единств, доказательство существования у ядер электрич. октупольных моментов. Выли измерены вращат. магн. моменты и электрич. дипольные моменты молекул, энергия вз-ствия ядерных магн. моментов с вращат. магн. моментами молекул, зависимость электрич. й магн. свойств от ориентации молекул квадрупольные моменты молекул, энергия межъядерных магн. вз-ствий в молекулах и др. Частота колебаний, соответствующая линиям сверхтонкой структуры магнитного резонанса в М. и а. п.,— основа для определения секунды в пассивных квантовых стандартах частоты.  [c.435]

Электрические и магнитные моменты ядер. В разл. состояниях ядро может иметь разные по величине магн. дипольные и электрич. квадрупольные моменты. Квадрупольные моменты ядер могут быть отличны от нуля только в том случае, когда спин Яд. состояние с определённой чётностью Р не может обладать отличным от нуля электрич. дипольным моментом. Более того, даже при не ох-ранении чётности для возникновения электрига. дипольного момента необходимо, чтобы вз-ств1 е нуклонов было необратимо по времени (Г — неинвариантно). Поскольку по опытным данным Г-неинвариантные межнуклон-ные силы (если они вообще есть) по меньшей мере в тысячу раз слабее осн. яд. сил, а эффекты несохранения чётности также очень малы, то электрич. дипольные моменты либо равны нулю, либо столь малы, что их обнаружение находится вне пределов возможностей совр. яд. эксперимента. Яд. магн. дипольные моменты имеют порядок ве-  [c.924]

Рассмотрим теперь закон уширения со временем, если ДУС а) являются электрически нейтральными, но не имеют дипольного момента, б) не являются электрически нейтральными. В случае а) ДУС будет характеризоваться квадрупольным моментом q. При этом взимодействие ДУС с хромофором имеет следующий вид Д (г) = Dq/r , где D — дипольный момент хромофора, а величина q пропорциональна квадрупольному моменту ДУС. Подставляя последнее выражение в формулу (19.24) для и вычисляя этот интеграл, получим  [c.277]

Слабый переход между состояниями Ф и Ф" с поглощением или испусканием электромагнитного излучения может происходить, если даже матричный элемент электрического дииольного момента (11.144) равен нулю, так как матричные элементы операторов магнитного дипольного или электрического квадруполь-ного момента молекулы могут быть отличными от нуля (более высокие мультипольные переходы также возможны, но пока не наблюдались). Вероятности магнитных днпольных и электрических квадрупольных переходов обычно составляют около 10 и 10 соответственно от вероятности электрических ди-нольных переходов. Такие переходы также называются запре-  [c.354]

Согласно теории таких переходов, разработанной Вейцзекке-ром, у-кванты различной мультипольности возникают в результате разных колебаний внутри ядра. Некоторые из этих процессов связаны с перераспределением электрических зарядов внутри ядра (электрические дипольное, квадрупольное и т. д. излучения), другие — с перераспределением токов или магнитных моментов нуклонов (магнитные дипольное, квадрупольное и т. д. излучения). Между моментами начального состояния ядра /1 и конечного состояния ядра /2 и моментом А/, уносимым у-квантом, должно существовать соотношение  [c.123]

Как раздел молекулярной спектроскопии, индуцированные спектры начали систематически изучаться приблизительно 15 лет назад (см. обзоры Р ]), хотя еще в 1932 г. Кондон показал, что возникновение у помещенных в электрическое поле молекул индуцированного дипольного момента ведет к появлению своеобразного колебательно-вращательного спектра поглощения, интенсивность которого определяется матричными элементами тензора поляризуемости и правилами отбора, действующими в спектрах комбинационного рассеяния. Чрезвычайно тесная связь индуцированных спектров с процессами межмолекулярных взаимодействий определяет перспективность использования этих спектров для получения разносторонней информации о структуре межмолекулярных полей и молекулярной динамике сжатых газов и конденсированных систем, в частности динамики трансляционного движения молекул. Особый интерес представляют применения индуцированных спектров в астрофизике и физике атмосферы. Наблюдения квадрупольных и индуцированных полос в обертонной об.пасти позволили подтвердить присутствие молекулярного водорода в атмосферах гигантских планет [ Индуцированное поглощение кислорода и азота в значительной степени определяет оптические свойства земной атмосферы [ ].  [c.214]

Распределение по направлениям волновой амплитуды у-лучей 0) или интенсивности (аФ ) характерно для осциллирующего электрического диполя, квадруноля и т. д. или осциллирующего магнитного диполя, квадруполя и т. д. Фактически электрическое квадрупольное излучение — = 2, нет изменения четности) является самым распространенным типом излучения ядерных у-лучей. Электрическими дипольными моментами в силу симметрии распределения заряда можно пренебречь, но электрические квадрупольные моменты могут быть относительно велики.  [c.35]

С классической точки зрения колебание магнитного дипольного момента или электрического квадрупольного момента также приводит к слабому испусканию или поглощению излучения. На основании квантовой теории вероятность перехода для магнитного дипольного или электрического квадрупольного излучения может быть рассчитана, если в выражение (11,1) для момента перехода вместо электрического дипольного момента подставить магнитный дипольный или электрический квадруполышй момент. Вероятность таких переходов будет отличной от нуля в том случае, если произведение г ) фе относится к тому же типу симметрии, что и одна из компонент магнитного дипольного или электрического квадрупольного момента.  [c.134]

Такое разложение, вообще говоря, не является однозначным. Электрический дипольный момент определен однозначно лищь в случае, когда единичный элемен объема в целом является нейтральным. Вектор М определен неоднозначно, если производная (ЗР/(Э/ отлична от нуля, а квадрупольный момент определен неоднозначно, если вектор Р отличен от нуля. Тем не менее подобное разложение оказывается полезным, если рассматриваемый объем можно разделить на единичные ячейки, для которых указанные моменты могут быть вычислены как последовательные приближения для величины J. Все они могут содержать, помимо линейных, и нелинейные члены.  [c.111]

Здесь Ч " (5) и Ч (В) — волновые функции этих двух состояний с коэффициентами а з и а о, подчиняющимися условию 05 + аЬ = = 1. Их значения определяются сопоставлением теоретических выражений с экспериментальными значениями магнитного дипольного момента и электрического квадрупольного момента дейтрона. Оптимальное отношение аЬ /аз этих коэффициентов равно 0,04. Смесь состояний теоретически описывается добавлением к сфери-чески-симметричному потенциалу взаимодействия, т. е. к центральному потенциалу, тензорного потенциала, зависящего от углов между векторами спинов нейтрона и протона и соединяющим эти частицы радиус-вектором ( 1.2).  [c.109]



Смотреть страницы где упоминается термин Дипольный и квадрупольный электрические моменты : [c.170]    [c.47]    [c.363]    [c.839]    [c.33]    [c.248]    [c.23]    [c.23]    [c.23]   
Смотреть главы в:

Экспериментальная ядерная физика Кн.2  -> Дипольный и квадрупольный электрические моменты



ПОИСК



Квадрупольные моменты

Квадрупольный момент, электрически

Момент дипольный

Момент квадрупольный электрический

Момент электрический

Электрический дипольный и квадрупольный моменты ядра

Электрический дипольный момент, постоянный квадрупольный момент

Электрический момент дипольный



© 2025 Mash-xxl.info Реклама на сайте