Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

полное установившегося движения

Механическим коэффициентом полезного действия машины или механизма называется отношение работы сил производственного сопротивления к работе движущих сил за один полный цикл установившегося движения. Коэффи-циент полезного действия находят по формуле  [c.175]

Полное время Гу д установившегося движения может состоять из любого числа циклов движения и зависит от того, сколь долго необходимо и возможно поддерживать рабочий режим движения механизма — режим со средней рабочей угловой скоростью (О,.р. Необходимо отметить, что многие машины и механизмы могут и не иметь четко разграниченных стадий движения. Так, например, в грузоподъемных кранах, экскаваторах, некоторых транспортирующих машинах и др. полное время движения того или иного механизма может состоять из времени разгона и времени выбега, и в этих механизмах отсутствует время установившегося движения с характерными для него циклами движения.  [c.305]


Рассмотрим отдельно установившееся движение. Для каждого полного цикла этого движения приращение кинетической энергии механизма равно нулю (см. уравнение (14.3))  [c.308]

Таким образом, за полный цикл установившегося движения работа всех движущих сил равна работе всех производственных /4ц. с и всех непроизводственных Л р сил сопротивления.  [c.308]

В большинстве механизмов движущие силы и силы сопротивления в течение времени установившегося движения непостоянны.Поэтому для определения коэффициента полезного действия подсчитывают работу всех движущих сил и производственных сопротивлений за один полный цикл времени установившегося движения машины. Например, если задан график  [c.310]

Таким образом, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему. Значения работ за полное время установившегося движения машины пропорциональны средним значениям мощностей за тот же период времени поэтому формулы (14.11) и (14.13) можно написать так  [c.311]

Из формулы (14.19) следует, что для определения коэффициентов полезного действия отдельных механизмов необходимо каждый раз определять работу или мощность, затрачиваемые на преодоление всех сил непроизводственных сопротивлений за один полный цикл установившегося движения. Для этого определяют для ряда положений механизма соответствующие силы непроизводственных сопротивлений. Для большинства механизмов — это силы трения. Далее, по известным скоростям движения отдельных звеньев механизма определяются мощности, затрачиваемые на преодоление сил трения. По полученным значениям мощностей определяют среднюю мощность, затрачиваемую в течение одного полного цикла установившегося движения на преодоление сил трения. Тогда, если мощность движущих сил будет известна, коэффициент полезного действия определится по формуле (14.19).  [c.313]

Г. Для определения момента инерции махового колеса необходимо иметь заданными приведенные силы или приведенные моменты сил движущих и сил сопротивления за одни полный цикл времени установившегося движения. Рассмотрим вначале тот  [c.382]

Чтобы построить диаграмму АГ = АГ (АУ ) для одного полного цикла времени установившегося движения механизма или машины, достаточно знать только изменение кинетической энергии и изменение приведенных моментов инерции. Для этого (рис. 19.9) откладываем полученное изменение кинетической энергии АТ по оси ординат от точки О, а переменный приведенный момент инерции А/п — от той же точки по оси абсцисс. Соединяя полученные точки а, Ь, с м т. д. плавной кривой, получаем диаграмму АГ = АТ (АУп), соответствующую времени установившегося движения механизма.  [c.387]


Отношение абсолютной величины работы(или средней мощности) полезных сопротивлений к работе (или средней мощности) движущих сил за один полный цикл установившегося движения механизма называется механическим коэффициентом полезного действия (КПД) механизма.  [c.62]

На границе таких областей происходит либо исчезновение одного из этих движений, либо нарушение устойчивости. Поэтому задача выделения областей существования и устойчивости простейших установившихся движений (состояний равновесия и периодических движений) является частью более обш,ей задачи изучения бифуркаций особых точек и замкнутых фазовых кривых. Однако значимость теории бифуркации состоит не только в этом, но и в том, что она открывает путь к более полному изучению динамических систем и оказывается полезной даже при изучении конкретной динамической системы, которая ни от каких параметров не зависит. Последнее означает, что в ряде случаев изучение конкретной динамической системы существенно облегчается путем искусственного введения параметров и последующего использования теории бифуркаций.  [c.251]

Установившееся ламинарное движение является в полном смысле слова установившимся движением. Линии токов в нем совпадают с траекториями частиц, как это наглядно видно из опытов с окрашиванием струй. Но не нужно думать, как это может на первый взгляд показаться, что ламинарное движение является безвихревым.  [c.80]

Истечение жидкости через отверстия при переменном напоре представляет значительный интерес, так как оно обычно встречается при вытекании жидкости из резервуаров, бассейнов и т. п. Исследование этого вопроса сопряжено с определенными трудностями в связи с тем, что при этом имеет место неустановившееся движение жидкости. Однако в тех случаях, когда изменение скорости истечения происходит медленно, можно с достаточной для практики точностью применять законы установившегося движения. Обычной задачей в этом случае является определение времени частичного или полного опорожнения резервуара.  [c.114]

Для установившегося движения полную производную объемного интеграла можно выразить через интеграл по контрольной поверхности S, подобно тому, как это было сделано для производной от количества движения.  [c.112]

Энергетический смысл уравнения Бернулли для элементарной струйки при установившемся движении идеальной жидкости заключается в том, что полная удельная энергия вдоль струйки остается неизменной.  [c.279]

Следовательно, гео.метрический смысл уравнения Бернулли заключается в том, что при установившемся движении идеальной жидкости сумма трех высот напоров) — геометрической, пьезометрической и обусловленной скоростным напором — есть величина постоянная вдоль потока. В связи с этим линия полного напора будет параллельна плоскости сравнения (рис. 22.9).  [c.280]

Как мы уже отмечали (см. 1.1), в реальных системах всегда происходит рассеяние энергии, ее потери, ее уход из системы и, как следствие этого, уменьшение общего запаса колебательной энергии. Процесс рассеяния — диссипации энергии и уменьшения ее общего запаса присущ всем реальным системам, не содержащим устройств, пополняющих эту убыль энергии. Поэтому мы вправе ожидать, что учет процесса уменьшения исходного запаса колебательной энергии позволит нам получить решения, полнее описывающие реальные движения, чем при рассмотрении консервативных систем. Можно указать на множество характеристик колебательных процессов, которые обусловлены наличием в системе потерь энергии, происходящих по определенному закону и являющихся существенными как для линейных, так и для нелинейных систем. К числу проблем, требующих для своего решения учета диссипации, относятся, например, оценка резонансной амплитуды в линейной системе или в системе с малой нелинейностью, обший вид установившегося движения при наличии вынуждающей силы, закон изменения во времени амплитуды свободных колебаний, устойчивость различных состояний и пр.  [c.41]


Поскольку мы рассматриваем установившееся движение, при котором гидродинамическое давление р можно считать не зависящим от времени, то трехчлен в скобках (см. уравнение (3.14)] представляет собой полный дифференциал давления  [c.75]

В гидродинамике невязкой жидкости особенно полно разработана теория плоских стационарных (установившихся) движений. Пусть, например, плоский безграничный поток обтекает цилиндрическое (или призматическое) тело, бесконечное в направлении, перпендикулярном к скорости течения, длины. Характер обтекания тела будет одинаков во всех плоскостях, перпендикулярных к образующим (или ребрам) тела. Следовательно, для исследования кинематики и динамики такого потока достаточно рассмотреть плоскую задачу обтекаемого тела. В этом случае скорости и давления зависят только от двух координат, пусть, например, х и у, также функцией этих двух координат являются проекции и Vy скорости течения.  [c.79]

Таким образом, при установившемся движении локальные ускорения равны нулю и полное ускорение равно конвективному  [c.60]

См. Б. А. Д е р г а ч е в. Случаи увеличения полного напора по течению реальной жидкости (для целого потока при установившемся движении). Сборник научно-методических статей по гидравлике. Вып. З.-М. Высшая школа, 1980.  [c.204]

Полное время движения и работы машинного агрегата состоит из трех периодов пуска, установившегося движения и останова (рис. 10.1).  [c.334]

Подчеркнем, что в этой схеме в рамках теории идеальной жидкости в установившемся движении в бесконечности сзади крыла в плоскостях, параллельных плоскости yz, остается возмущенное движение жидкости (нет выравнивания давлений и скоростей), за счет нарастания энергии этого возмущенного движения получается индуктивное сопротивление в идеальной жидкости. Полное сопротивление можно получить как сумму индуктивного сопротивления и сопротивления трения, определенного с помощью теории пограничного слоя.  [c.289]

В первом периоде скорость движения ведущего звена растет от нуля до максимума, в последнем — снижается до нуля. При установившемся движении работа движущих сил за полный цикл по абсолютной величине равна работе сил сопротивления Лд = Ас, однако, в отдельные моменты цикла указанные работы могут быть не равны (Лд Ф Ас).  [c.81]

Режимы движения машинного агрегата. Из приведенного выше примера можно сделать важные заключения и не прибегая к отысканию ф = ф ( ). На рис. 2.24 совмещены характеристики Мд и М с + М с = М(.. В начальный момент времени при подключении электродвигателя к сети о === О и отрезок Л С на рис. 2.24 изображает результирующий момент М в уравнении (2.12). Под действием этого момента возникает положительное ускорение а > О и угловая скорость о растет. С увеличением скорости избыточный момент уменьшается и в точке В становится равным нулю. Изменение скорости также прекращается, и дальнейшее движение может совершаться только с постоянной установившейся скоростью со = (о . В нужный момент выключают двигатель, и тогда под действием отрицательного момента сил сопротивлений произойдет постепенная остановка вентилятора. Таким образом, полный цикл работы, представленный на рис. 2.25, складывается из трех частей разгона, когда в течение времени скорость увеличивается установившегося движения в течение времени с равновесной установившейся скоростью сО(. (это состояние не может прекратиться самопроизвольно, без вмешательства извне) н, наконец, выбега, при  [c.60]

Из этого уравнения следует, что за полный цикл установившегося движения работа Лд движущих сил равна сумме работ Лп. о производственных и Лтр непроизводственных сопротивлений.  [c.301]

Следовательно, график функции Л (ер) является также и графиком функции АТ((р). Величину АУп = п можно определить обычным методом для одного полного цикла установившегося движения.  [c.393]

Смысл последнего понятия легко выясняется. По рис. 366 угол а остается неизменным, и, следовательно, регулятор не реагирует, т. е. не меняет относительного положения шаров на интервале изменения угловой скорости сОр при переходе из положения р в положение р или р". Конечно, качество регулятора определяется также и величиной 8р. Чем чувствительнее регулятор, т. е. чем меньше Вр, тем скорее происходит регулирование скорости машины. Однако величина бр должна быть ограничена снизу, так как в противном случае регулятор может реагировать и на допускаемую неравномерность хода б машины, имеющуюся внутри периода установившегося движения, что привело бы к непрерывному подъему и опусканию шаров. Поэтому коэффициент нечувствительности должен быть больше коэффициента неравномерности хода машины. Обычно принимают ер = 1,256. Под коэффициентом полной неравномерности регулятора понимают  [c.399]

В самом деле, как было установлено выше, у большей части механизмогз только за полный цикл установившегося движения работа всех движущих сил равна работе сил сопротивления, Ьпутри >ке этого цикла мы не наблюдаем равенства этих работ, ь, следовательно, начальное звено механизма движется внутри цикла неравномерно. Так как через каждый полный цикл установившегося движения кинетическая энергия механизма принимает начальное значение, скорости начального звена механизма тоже  [c.373]

Величина ДУц = Уп -f Уд методом, указанным в 71, может быть определена для одного полного цикла установившегося движения механизма. Диаграмма ДУп = ДУп (ф) показана на рис. 19.8. Из этой диаграммы видно, что ДУц состоит из постоянного момента инерции У,, и переменного Уз. Диаграмма п = (ф) зависимости полного момента инерции Уд от угла поворота ф согласно ра-оечству (19.18) показана на рис. 19.7.  [c.383]


На рис. 11.21, а s( ) — перемещение схвата, записанное с помощью реохордного датчика v(t) — скорость движения схвата, за писанная с помощью магнитоиндукционного датчика a(t) — ускорение схвата, записанное с помощью акселерометра инерционного типа As(t) — малые перемещения (колебания в одной плоскости) схвата в конце хода руки после его останова, записанные тензомет-])ическим датчиком /р — время разгона уст— время установившегося движения /, — время торможения /ф — время фиксации (успокоения) схвата с грузом после останова руки робота / — общее время движения руки до останова Т — полное время движения, включая время фиксации схвата.  [c.338]

Из зависимости (22.13) следует, что угловая скорость звена приведения за полный оборот не остается постоянной, а меняется, периодически принимая одинаковые значения, если не меняются законы изменения У (ф) и М (ф). Постоянный характер функций приведенных величин возможен только в случае установившегося движения механизма. Такое движение имеет место, если при работе машины приведенный момент сил движущих постоянно равен приведенному моменту сил сопротивления. В этом случае кинетическая энергия машины Е = 0,5УпСо не должна изменяться. Так как  [c.291]

Проанализируем выражение (3.18). Выясним условия, при которых величина 1/2/2 + dpZp + и постоянна, что соответствует сохранению полной энергии единицы массы газа при установившемся движении. Очевидно, для этого необходимо, чтобы определитель в (3.18) был равен нулю, что будет в случае, если элементы какой-либо строки пропорциональны соответствующим элементам другой строки. Следовательно, можно представить зависимости  [c.83]

Если приравнять полное сопротивление сферы архимедовой силе (1.19), то легко получить скорость установившегося движения сферы под действием силы Архимеда.  [c.183]

Полное гидромеханическое подобие возможно только при равенстве в рассматриваемых подобных потоках всех критериев, определяемых условием (10.33). Для установившегося движения определяющими являются критерии Рейнольдса и Фруда, неопределяющим — критерий Эйлера. Однако, строго говоря, условие полного динамического подобия не может быть выполнено, так как даже определяющие критерии Ре и Рг на практике оказываются несовместимыми. Очевидно, для совместимости критериев необходимо, чтобы масштабы физических величин, входящих в критерии подобия, были одинаковыми.  [c.391]

В период пуска и останова все машины работают в неустано-вившемся режиме. Для большого числа машин периоды пуска и останова составляют лишь незначительную часть полного времени их работы основным для них является режим установившегося движения.  [c.19]

Для определения к. п. д. механизма для ряда положений механизма подсчитываем мощность Nrp, затрачиваемую на преодоление сил трения за один полный цикл времени установившегося движения. Общая мощность iVxp сил трения в каждый момент времени  [c.367]


Смотреть страницы где упоминается термин полное установившегося движения : [c.305]    [c.310]    [c.352]    [c.377]    [c.382]    [c.383]    [c.138]    [c.11]    [c.80]    [c.346]    [c.111]    [c.201]    [c.300]   
Теория машин и механизмов (1988) -- [ c.304 , c.306 ]



ПОИСК



Геометрическая интерпретация уравнения Бернулли для элементарной струйки идеальной жидкости при установившемся движении. Полный напор для элементарной струйки

Движение установившееся



© 2025 Mash-xxl.info Реклама на сайте