Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние примесей на свойства алюминия

Влияние примесей на свойства алюминия  [c.12]

Основными примесями в алюминии являются железо и кремний. Растворимость каждого из них показана на фиг. 71 и 72. Количество железа и кремния определяет свойства алюминия в отожжённом состоянии. Добавки железа и кремния повышают прочность алюминия и снижают пластичность. Упрочнение алюминия ог этих примесей невелико и практического значения не имеет. Кроме этих примесей, в алюминии присутствуют обычно в незначительных количествах (от нескольких тысячных до нескольких сотых процента) медь, цинк, натрий, кальций, влияние которых на свойства алюминия незначительно.  [c.169]


Влияние примесей на свойства сплавов системы алюминий—магний  [c.49]

Следует отметить, что влияние примесей на тепловую и электрическую проводимость сходно. Алюминий при температуре 1,175 0,001 К переходит в сверхпроводящее состояние. Магнитные и оптические свойства алюминия приведены в [5].  [c.13]

На свойства алюминия оказывают влияние содержащиеся в нем примеси. В настоящее время можно получить алюминий высокой степени чистоты (99,996%) в техническом алюминии содержится примесей до 2,0%. Основными из них являются железо и кремний. Они понижают электропроводность, теплопроводность, пластичность и коррозионную стойкость алюминия.  [c.193]

Влияние примесей на структуру и свойства титана. При производстве титановых сплавов в технический титан вводят различные легирующие добавки. Титан способен вступать во взаимодействие почти со всеми элементами периодической системы. Современные титановые сплавы в качестве легирующих элементов содержат алюминий, хром, ванадий, ниобий, марганец, тантал, медь, железо, кремний, олово, молибден и др. Все перечисленные элементы образуют с титаном твердые растворы замещения.  [c.17]

Такое разрушение имеет место только у загрязненного алюминия, причем даже очень малые количества примесей могут оказать влияние на свойства границ зерен, поскольку и в алюминии, очищенном зонной плавкой, происходит междендритная сегрегация.  [c.51]

Железо, алюминий, никель и кобальт являются основными компонентами. Медь, титан и ниобий относятся к легирующим присадкам. Углерод, сера, фосфор, марганец и кремний — примеси, допустимое содержание которых составляет доли процента. Исключением является только кремний, который в зависимости от процентного содержания никеля является или вредной примесью или легирующим элементом, Влияние содержания элементов на свойства сплавов приведено в табл. 24.  [c.97]

При изучении сплавов, имевших наибольшую концентрацию примесей, с помощью методов определения электросопротивления и механических свойств было обнаружено, что перед рекристаллизацией, но после уменьшения концентрации вакансий проходит стадия возврата. Исследование тонких металлических фольг в электронном микроскопе показывает, что эта стадия соответствует увеличению совершенства блочной структуры, характерной для металла, подвергнутого холодной обработке. В результате этого исследования было установлено, что примеси, присутствующие в металле, влияют на процесс возврата. Кроме того, полученные данные подтвердили результаты измерений электросопротивления, согласно которым з очищенном зонной плавкой алюминии стадия возврата вообще отсутствует. Поэтому изучение рекристаллизации в этом металле имеет особое значение, поскольку здесь отсутствует влияние возврата на исследуемый процесс.  [c.458]


На пластические свойства алюминия оказывают влияние примеси железа и кремния, содержание которых не должно превышать 1%. Алюминиевые сплавы (дюралюминий) повышают прочность, но зато понижают пластичность по сравнению с чистым алюминием.  [c.11]

На физико-механические и технологические свойства алюминия оказывают влияние содержащиеся в нем примеси. В настоящее время можно получить алюминий высокой степени чистоты (99,99%) в техническом алюминии содержание примесей составляет от 0,1 до  [c.229]

Чем чище металлы, тем больше их сопротивление коррозии. Например, алюминий с 0,01 % примесей более стоек против коррозии в атмосферных условиях, чем технический алюминий с 0,05 о примесей. Чистые металлы корродируют в меньшей степени, чем их сплавы. Посторонние включения в значительной степени понижают коррозионную устойчивость металлов и сплавов. Степень влияния легирующих примесей на сопротивление металлических сплавов коррозии зависит не только от характера этих примесей, но и от их количества. Например, введение меди и хрома повышает коррозионную устойчивость стали в атмосфере однако если медь вводится в незначительном количестве, то только большое содержание хрома ( 12%) делает сталь нержавеющей в атмосфере и других промышленных средах. Значительное влияние на коррозионную устойчивость оказывает структура. Наибольшей коррозионной устойчивостью обладают однофазные сплавы (чистые металлы, твердые растворы, химические соединения). Многофазные сплавы (механические смеси) корродируют быстрее. Однако известны случаи, когда многофазные сплавы обладают высокими антикоррозионными свойствами (например, силумины). Чем чище поверхность металлов и сплавов, тем их сопротивление коррозии больше. Напряженность поверхности металла повышает его коррозию металл, подвергнутый деформации, корродирует больше. Влияние внутренних факторов усиливается или уменьшается в зависимости от корродирующей среды. Например, изменение содержания углерода в стали незначительно влияет на ее стойкость против коррозии в атмосфере и слабых электролитах в кислых же средах повышение содержания углерода заметно снижает коррозионную стойкость стали.  [c.247]

Влияние примесей и холодной деформации на механические свойства алюминия  [c.25]

Ниже приведены данные о влиянии различных примесей на физические свойства алюминия и характеристики основных промышленных алюминиевых сплавов.  [c.488]

Чистота алюминия имеет важное значение, так как примеси оказывают значительное влияние на электрические, коррозионные и технологические свойства технического алюминия. На рис. 457— 459 показано влияние примесей и добавок на электропроводность и теплопроводность алюминия.  [c.381]

Алюминий положительно влияет на механические свойства магния. В распространенные магниевые сплавы алюминий наряду с цинком, марганцем и кремнием вводят как легирующую добавку. Примеси кальция, бериллия, циркония и редкоземельных элементов оказывают существенное влияние на свойства магниевых сплавов их вводят в небольших количествах в специальные сплавы. Сплавы магния с литием, по литературным данным, являются перспективными.  [c.431]

Сплавы титана имеют несколько меньшую жаропрочность, чем специальные стали. Рабочая температура их использования составляет не выше 550—600 °С, При повышении температуры более 500 °С титан и его сплавы легко окисляются и интенсивно поглощают водород и другие газы (азот, кислород). Газы образуют с титаном твердые растворы внедрения разной предельной концентрации, в то время, как легирующие элементы (алюминий, ванадий, олово и др.) образуют твердые растворы замещения. Примеси внедрения оказывают сильное влияние на свойства титана, увеличивая прочность н резко уменьшая вязкость и пластичность. При технических и эксплуатационных нагревах необходимо принимать меры для защиты титана от газонасыщения. Кроме газов, вредной примесью для титана является углерод, образующий карбиды.  [c.221]


Алюминий, применяющийся обычно технически чистым, по своим физико-химическим свойствам является одним из лучших раскислителей, так как обладает одновременно высоким сродством к трем вредным примесям — кислороду, азоту и сере, а также способствует измельчению зерна аустенита. При этом положительное влияние алюминия на свойства стали сказывается при остаточном содержании его в сотые доли процента. Поэтому алюминий как раскислитель в последние годы находит все большее и большее применение, хотя он относительно дорог.  [c.270]

В высоком вакууме изменяются механические свойства металлов. В основном наблюдается увеличение пластичности. При растяжении моно- и поликристаллов алюминия в вакууме 1,33 МПа удлинение до разрушения возрастает на 40%, при этом предел прочности заметно снижается. Отмечалось влияние вакуума на механические свойства магния, молибдена. Наблюдаемый эффект объясняется тем, что окисная пленка служит барьером для выхода дислокаций. Дислокации концентрируются в приповерхностном слое, благодаря чему имеет место упрочнение материала. Если же степень вакуума достаточно высока, так что окисная пленка на чистых поверхностях не образуется, выход дислокаций облегчается и пластичность увеличивается. Пластические свойства изменяются также благодаря удалению газовых примесей в поверхностных слоях металла при деформации. Типичные режимы термической обработки в вакууме приведены в табл. 2.  [c.216]

Примеси железа и кремния оказывают вредное влияние на алюминий, снижают его пластические свойства, увеличивают твердость, повышают температуру рекристаллизации., Первичный алюминий поставляется в чушках (по ГОСТ 11070—74) массой 5, 15 и 1000 кг с маркировкой по ГОСТ 11069—74 и цилиндрических слитках (по ГОСТ 11069—74).  [c.130]

Большое влияние на некоторые технологические, особенно литейные свойства, в частности на склонность к появлению кристаллизационных трещин и на пластичность, оказывают уровень и соотношение постоянно присутствующих в алюминии примесей железа и кремния. При уменьшении количества примесей железа и кремния в сплавах системы А1—2п—Mg—Си можно  [c.13]

Для получения мощных потоков монохроматических лучей света разработаны конструкции оптических квантовых генераторов ОКГ (лазеров и мазеров). Эти генераторы работают в импульсном режиме с длительностью импульса 0,2—50 мксек и частотой повторения 0,1—5 имп/сек. Получение мощных световых потоков в квантовых генераторах основано на том, что атомы некоторых оптически активных веществ (твердых — рубин, сапфир газообразных — гелий, неон и др.) обладают свойством создавать в веществе большой потенциальный запас энергии под влиянием внешнего возбудителя мгновенно возвращать вещество к до возбужденному состоянию и при этом излучать поток когерентного света большой мощности. Рубиновый стержень (окись алюминия с примесью хрома) получил самое широкое применение в качестве оптически активного вещества в современных конструкциях ОКГ. Создан полупроводниковый оптический генератор, имеющий к. п. д. выше квантовых генераторов на рубине в десятки раз.  [c.643]

Примеси кальция и другие, присутствующие в стандартных марках алюминия в ничтожном количестве, не имеют практического значения. Незначительные добавки церия, натрия и титана оказывают существенное влияние на структуру и свойства определенных алюминиевых оплавов.  [c.383]

Влияние примесей на свойства оловянноцинковых припоев. Свинец не влияет заметным образом на свойства оловякноцинковых припоев, но улучшает жидкотекучесть. Висмут понижает температуру плавления. Кадмий ухудшает паяльные свойства коррозионные свойства от добавки кадмия ухудшаются настолько, что иногда шов распадается при выдерживании его в 3%-ном растворе хлористого натрия. Серебро в количестве 1—3% влияет благоприятно на свойства оловянноцинковых припоев, повышает их коррозионную устойчивость. Добавка фосфора к оловянноцинковым припоям способствует разрушению окисной пленки при пайке алюминия и улучшает жидкотекучесть. Добавка алюминия в количестве 1—6% благоприятно влияет на прочность спайки.  [c.352]

В промышленности металлы получают различной чистоты в зависимости от технологии, но концентрация примесей в них редко бывает ниже 10 %. Однако для развития полупроводниковой техники потребовались материалы, содержание примесей в которых значительно меньше этой величины. Необходимый уровень содержания примесей может быть достигнут с помощью такого физического метода очистки, как фракционная кристаллизация. Этот метод, предложенный Пфанном [74], был назван зонной плавкой. Путем зонной плавки была достигнута очень высокая чистота полупроводниковых материалов, после чего этот процесс был с успехом применен для очистки алюминия [23], а впоследствии и других металлов галлия [33], висмута [83 циркония [48, 50], олова [8], урана [4, 5], железа [93, 24], свинца [19], меди [55] и т. д. При использовании соответствующей технологии зонная плавка может служить способом очень глубокой очистки. Мы коснемся здесь только тех ее приложений, которые позволяют изучать влияние примесей на свойства металлов. Для детального ознакомления с процессом зонной плавки и различными ее возможностями следует обратиться к книге Пфанна [105] (см. также выше, гл. IV, разд. 3).  [c.432]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]


Высокая прочность этих сплавов обусловливается тем, что растворимость меди в твердом алюминии может достигать 5,7%. При этом двойные сплавы системы А1 —Си (например, сплав АЛ7) применяют лишь в закаленном состоянии, т. е. с гомогенной структурой. Чем гетерогеннее структура, тем сплавы обладают большей хрупкостью. Повышенная хрупкость сплавов типа АЛ7 объясняется наличием по границам зерен твердого раствора большого количества сравнительно крупных частиц фазы uAlj. На понижение прочностных характеристик также оказывают вредное влияние примеси Fe и Si. Влияние этих примесей на свойства сплавов системы А1 — Си различное. Например, Fe с Си и А1 образует фазу Al-j uaFe, кристаллизуюш,уюся по границам зерен в виде крупных частиц, что резко понижает пластичность сплавов, но в то же время присутствие железа в этих сплавах заметно снижает склонность к образованию горячих трещин.  [c.87]

Оксиды неметаллов. К данной группе примесей относятся В2О3 и Р20з- Подобно другим оксидам, относящимся к под-фуппе ЗА Периодической системы элементов, BjOj электрохимически разлагается, и бор растворяется в алюминии. В противоположность другим металлам бор оказывает положительное влияние на свойства некоторых алюминиевых сплавов и приводит к очистке металла от титана и ванадия. По этой причине борсодержащие соединения иногда специально вводят в электролит.  [c.156]

В ряде работ того времени было отчетливо показано исключительное влияние примесей в металле на его свойства. Так, при исследовании старения сплавов алюминия с медью, приготовленных на чистом алюминии, было установлено, что в отличие от технических сплавов алюминия с медью чистые сплавы стареют при комнатной температуре. Было показано далее, что старению при комнатной температуре подвержены и чистые сплавы алюминия с медью и магнием, не содержащие кремния, причем не в меньшей, если не в большей степени, чем сплавы, приготовленные на техническом алюминии. Тем самым сразу же была поставлена под сомнение господствовавшая тогда теория старения, основывавшаяся на признании роли Mg2Si в качестве упрочняющей фазы в сплавах типа дуралюмин. В связи с этими работами была подвергнута ревизии диаграмма состояния А1 — Си — Мд, в результате чего было установлено существование пропущенной в прежних работах фазы А12СиМд.  [c.482]

Некоторые примеси в алюминии, а также ряд легирующих элементов, различное структурное состояние полуфабрикатов, внутренние и внешние напряжения, природа и температура воздействующей коррозионной среды оказывают существенное влияние на коррозионные свойства алюминия и его сплавов. Так, например, примесь меди существенно снижает коррозионную стойкость алюминия в 3%-ном растворе Na l+ 0,1% Н2О2. Примеси кремния и железа оказывают меньшее влияние (табл. 237).  [c.513]

Рекомендации разных исследователей по борьбе с фестонистостью бывают противоречивы. Систематические исследования влияния примесей и добавок на текстуру рекристаллизации и анизотропию механических свойств никеля, меди, алюминия и мельхиора позволили Д. И. Лайнеру сделать вывод, что химический состав служит одним из главных факторов, определяющих фестонистость. Оптимальный режим прокатки и отжига для получения бесфвстонистых стаканов может резко измениться при сравнительно небольших и часто не принимаемых  [c.103]

Все эти бронзы не расслаиваются, не слишком хрупки, имеют достаточные предел упругости на сгкатие и твердость. Вообще эти бронаы имеют по данным авторов этой работы (проф. Славинского и его сотрудников) нужное для антифрикционных сплавов строение и прочность, но для окончательного суждения об их антифрикционности необходимы испытания на трение и износ, необходимо определить их поведение в эксплоатации, как это и указывают вышеупомянутые авторы. При анализе таких бронз (в исследовательских институтах Союза ССР) в них находили кроме меди, свинца, никеля и олова еще небольшие количества цинка, алюминия, сурьмы, железа, серы и некоторых других элементов. Может быть, некоторые из этих веществ являются случайными примесями, может быть, некоторые из них умышленно вводились (например сера). Богатые свинцом оловянно-свинцовые бронзы являются хорошими антифрикционными материалами. В табл. 31 представлено влияние на свойства Си — 8п бронаы (с 5 и 10% 8п) одного свинца и одновременно свинца и никеля, а на бронзы Си— 8п с 10% 8п — одного никеля.  [c.422]

Железо при комнатной температуре практически нерастворимо в алюминии и присутствует в нем в виде самостоятельной фазы (А1эРе). В жаропрочных алюминиевых сплавах железо в сочетании с никелем оказывает положительное влияние. В большинстве же случаев железо относится к вредным примесям в алюминии. Кремний иа механические и физико-химические свойства алюминия влияет так же, как и железо. Значительное влияние на свойства ряда алюм1и1ниевых сплавов оказывают даже не-  [c.354]

Для улучшения механических свойств алюминия в сплавы обычно вводят Си, 51, Mg, 2п и Мп. Из этих добавок Мп может заметно повысить коррозионную стойкость обрабатываемых и литейных сплавов. Одна из причин благотворного действия марганца — образование соед1шения, связывающего железо. Соединение (МпРе)А1 осаждается на дно расплава, уменьшая таким путем содержание примеси железа и его вредное влияние на коррозию [131. В случае легирования Со, Си и N1 подобных соединений не образуется. Поэтому нельзя ожидать, что в таких случаях добавка марганца будет уменьшать вредное влияние на коррозионную стойкость.  [c.283]

Вопрос о влиянии состава сплава рассмотрим на примере стали. Влияние углерода на скорость газовой коррозии еще не выявлено с достаточной определенностью. Однако сколько-нибудь значительных изменений скорости газовой коррозии стали с повышением процента углерода не наблюдается. Обычные примеси (Мп, S, Р, Si) в количестве (суммарно) до 1% мало влияют на устойчивость стали к газовой коррозии. Значительное повышение устойчивости дает сравнительно высокое легирование сталей хромом, алюминием и кремнием (максимальные практически применяемые присадки хрома до 30%, алюминия до 10% и кремния до 5%). Алюминий и кремний при большем содержании вызывают хрупкость и некоторое ухудшение технологических свойств (невозможность обработки давлением и повышенную хрупкость, часто связанную с чрезмерным ростом зерна). Содержание алюминия выше 10°/o вызывает также пузырение стали. Основой жароупорных сплавов чаще является система Fe — Сг с добавочным легированием алюминием и кремнием.  [c.101]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Вопрос о влиянии незначительных примесей и металлических добавок иа механические свойства редкоземельных металлов мало изучен для иттрия эти данные известны [14]. Обычные примеси элементов внедрения (углерод, азот, кислород и водород), если они присутствуют в малом количестве, слабо влияют на пластичность и прочность иттрия, чем последний разительно отличается от большей части прочих металлов. Твердость, пластичность н предел текучести иттрия больше всего зависят от предшествующей термообработки, ориентировки зерен и степени наклепа. Титан, ванадий и хром дают с иттрием сходные диаграммы состояния, в которых эвтектика смещена к богатому иттрием краю диаграммы. В копцеитращ1и до 5"6 эти металлы не оказывают вредного влияния на пластичность иттрия. Кремний, алюминий, железо н никель малорастворимы в иттрии, так что в концентрации до 0,5% они почти не отражаются на прочности и величине предела текучести иттрия. В пределах до 5% их содержания пластичность иттрия понижается.  [c.602]


Влияние pH воды на коагулирование ее примесей. Выше было показано, что чем больше разница между pH обрабатываемой воды и pH изоэлектрического состояния вещества (рНиз), тем больше величина его заряда и тем больше его агрегатив-ная устойчивость. Отсюда становится понятным значение pH исходной воды при коагулировании ее примесей. Образующийся при диссоциации ион алюминия (или железа) принимает участие не только в образовании коллоидов гидроксидов, но и активно действует в процессе обменной адсорбции катионов, вытесняя из диффузионного слоя менее активные катионы. В результате меняются физико-химические свойства примесей я, что самое важное, изменяется их pH изоэлектрической точки. Так, новые значения рНиз для глинистых частиц и гума-тов соответственно будут равны 7,1 и 7,0, т. е. в обычных условиях они будут коагулировать не только между собой, но и с гидроксидом алюминия, рНиз которого — 7,2.  [c.74]

Учитывая результаты работ, в которых обнаружено разрыхление алюминия при термоциклировании [88, 1981, сначала изучили влияние многократных закалок на плотность и структуру чистого алюминия А999. Закалки производили в воде от 500 и 600° С, и после 50 циклов плотность образцов менялась в пределах ошибки измерения. Образование трещин при этом не наблюдалось. Повышенная в сравнении с данными [88, 1981 термостойкость алюминия А999, возможно, связана с отсутствием примесей и ролью окисления. Интенсивное окисление образцов, особенно при высоких температурах нагрева, могло сказаться на характере распределения термических напряжений и свойствах материала. Образование пленки окислов может явиться одной из причин разрыхления образцов при термоциклировании. На приведенные ниже результаты окисление поверхности образцов не должно оказывать заметного влияния. Как правило, образцы взвешивали до и после удаления пленки окислов через каждые 15—20 циклов.  [c.106]

Для алюминия различной степени чистоты были определены значения критического скалывающего напряжения. По-видимому,, содержание примесей оказывает очень большое влияние на это свойство. Так, Миллер и Миллиган [64] нашли, что критическое скалывающее напряжение 99,0%-ного алюминия равно 140 г мм у. а алюминия чистотой 99,95% — 60 г мм . Для очищенного зонной плавкой металла Грейг [29] нашел величину 28 г1мм . При таком падении критического скалывающего напряжения с уменьшением содержания примесей трудно сказать, достигнута ли даже в очищенном зонной плавкой алюминии предельная величина этого параметра, соответствующая идеально чистому материалу..  [c.447]

Изучение поведения очищенного зонной плавкой алюминия интересно вдвойне во-первых, потому что становится возможным определение свойств сверхчистого материала и, во-вторых, на основе этого материала можно приготовить сплавы, содержащие малые количества примесей, и исследовать специфическое влияние каждой из них на рекристаллизацию. Для экспериментов такого рода обычные методы должны быть видоизменены, поскольку наблюдения необходимо вести при температурах ниже температур начала рекристаллизации (т. е. при температурах ниже комнатной). Развитие рекристаллизации в результате отжига наблюдают, в частности, с помощью рентгенографирования при температуре жидкого азота. Аннигиляцию дефектов решетки можно изучать путем измерения низкотемпературного электросопротивления см. разд. 3.4). Сами измерения нужно производить прй достаточно низкой температуре образца, чтобы в нем не происхо-  [c.453]

По мнению А. А. Соколовского и 3. И. Кулагиной [32], наблюдаемое удлинение процесса образования и снижение защитных свойств фосфатной нленки связано не с влиянием сульфат-ионов, а с действием накапливающейся в растворе свободной серной кислоты. Опыты по фосфатированию в растворе первичного фосфата марганца, содержащем в качестве добавки сульфат натрия (от 0,125 до 1 г/л, считая на SO3), не показали каких-либо отклонений от нормального течения пленкообразования. Следовательно, наличие сульфат-ионов в фосфатирующем растворе само по себе не является вредным. Однако высокое содержание сульфата кальция (до 30% к весу препарата) отрицательно влияет на фосфатирование, тогда как более умеренное его количество (2,5%) заметно не отражается на процессе. Вредны также примеси солей алюминия и свинца небольшие количества свинца (0,03 г/л и выше) приводят к образованию фосфатной пленки с низкими защитными свойствами добавление к фосфатирующему раствору 0,066—1 г/л фосфата алюминия (считая на AljOg) резко увеличивает Тн (до 165—240 мин) и снижает защитные свойства фосфатной пленки.  [c.129]

При рассмотрении фазового состава сплавов типа силумин необходимо также помнить о специфической роли железа, содержание которого как примеси в промышленных сплавах составляет обычно не менее 0,4—0,5%. В твердом алюминии железо растворяется от 0,02% при комнатной температуре до 0,1% при температуре гомогенизации. Казалось бы, что железо существенного влияния на эффект термической обработки оказать не может. Однако в большинстве своем фазы, содержащие железо, имеют грубокристаллическое строение, поэтому присутствие его в сплавах значительно снижает механические свойства, особенно пластичность.  [c.341]

Подгруппа VA. Азот. Является вредной примесью. Его содержание в кристаллически анизотропных сплавах не должно превышать 0,002 7о- Азот сильно измельчает зерно в литом состоянии. Отрицательное влияние на механические и технологические свойства проявляется в том, что нитриды и карбонитриды алюминия, титана и ниобия сосредоточиваются по границам зерна, усиливают их охрупчивание и препятствуют росту.  [c.143]


Смотреть страницы где упоминается термин Влияние примесей на свойства алюминия : [c.232]    [c.120]    [c.36]    [c.179]   
Смотреть главы в:

Справочник рабочего кузнечно-штамповочного производства  -> Влияние примесей на свойства алюминия



ПОИСК



141 — Влияние на свойства

Алюминий — Свойства

Влияние Свойства - Влияние примесей

Влияние примесей

Прима

Примеси



© 2025 Mash-xxl.info Реклама на сайте