Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магний Механические свойства

Магний — щелочноземельный металл, II группы Периодической системы элементов, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерным свойством магния является малая плотность 1,74 г/см , температура плавления магния 650 °С. Кристаллическая решетка гексагональная (с/а = 1,62354). Теплопроводность магния значительно меньше, чем у алюминия 125 Вт/(м-К), а коэффициенты линейного расширения примерно одинаковы (26,1 10 при (20—100 С) I. Технический магний Мг1 содержит 99,92 % Mg. В качестве примесей присутствуют Ре, Si, Ni, Na, Al, Мп. Вредными примесями являются Ре, Ni, Си и S1, снижающие коррозионную стойкость магния. Механические свойства литого магния сГв = 115 МПа, о ,., = 25 МПа, б 8 %, Е = = 45 ГПа, НВ 300 МПа, а деформированного (прессованные прутки) Оц 200 МПа, ст ,., = 9 МПа, б =-- 11,5 %, НВ 400 Л Па. На воздухе м, 11 ит легко воспламеняется. Используется в пиротехнике и химической промышленности.  [c.337]


Состав в процентах (остальное—магний) Механические свойства  [c.145]

Магний — щелочноземельный металл, второй группы Периодической системы элементов Д. И. Менделеева, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерны.м свойством магния является малая плотность 1,74 г/см . Температура плавления 650°С. Кристаллическая решетка гексагональная (а = 3,203, с=5,2002 А, с/а= 1,62354). Теплопроводность магния значительно меньше, чем алюминия [0,3 кал/(см-с-°С)], а коэффициенты линейного расширения примерно одинаковые (26,1-Ю" при 20—100°С). Технический магний Мг1 содержит 99,92% g. В качестве примесей присутствуют Ре, Si, N1, Ыа, А1, Мп, Си. Вредными примесями являются Ре, N1, Си и 5 , снижающие коррозионную стойкость магния. Механические свойства литого магния Ов=И,5 кгс/мм  [c.381]

Для некоторых металлов (медь, алюминий, магний) и их сплавов наблюдается довольно резкое снижение механических свойств при нагреве, в результате чего в этом интервале температур металл легко разрушается от ударов, либо сварочная ванна  [c.340]

Высокие литейные свойства имеют сплавы, содержащие в структуре эвтектику. Эвтектика образуется в сплавах, в которых содержание легирующих элементов больше предельной растворимости в алюминии, Поэтому содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяют сплавы А1—Si, Л1—Си, А1 —Mg, которые дополнительно легируют небольшим количеством меди и магния (А1—Si), кремния (А1—Mg), марганца, никеля, хрома (Л1 —Си). Для измельчения зерна, а следовательно, улучшения механических свойств в сплавы вводят модифицирующие добавки (Ti, Zr, Н, V и др.). Механические свойства некоторых литейных сплавов алюминия приведены в табл. 23.  [c.333]

Отпуск при 600° С сплава комол позволяет использовать постоянный магнит из этого сплава в условиях несколько повышенных температур, при этом структурных превращений в сплаве не происходит, в то время как в кобальтовой стали, закаленной на мартенсит, даже при незначительном нагреве (до 50° С) резко ухудшаются магнитные свойства. Введение в сплав комол до 6% Мп улучшает механические свойства без снижения магнитных характеристик.  [c.220]

Как правило, с применением автоклавов изготовляют отливки из сплавов на основе алюминия, магния, меди и титана. Но известны работы [58] по изучению влияния газового давления в пределах О— 8 МН/м на структуру и механические свойства стали 40. Давление на зеркало жидкой стали в закрытой изложнице производилось азотом из баллона через газоотводящую трубку, снабженную прямым и обратным клапанами и манометром для определения рабочего давления газа.  [c.64]


Влияние температуры на механические свойства магния приведены на рис. 27.  [c.71]

Скорость деформации влияет на механические свойства магния. Увеличение скорости растяжения с 0,02 до 1,3 мм/с при 400 °С повышает Ов с 10 до 30 МПа и ф с 58 до 83 % [1]. Мелкозернистый магний пластичнее [1].  [c.72]

Внешняя среда влияет на механические свойства магния не только при атмосферном, но и при малом остаточном давлении газов, если ис пытания достаточно длительны. При растяжении монокристаллического магния чистотой более 99,96 7о со скоростью деформации 0,061 с и температуре 26 X не было заметно изменения свойств при уменьшении давления от 10 до 10— Па. Только при дальнейшем улучшении вакуума до 10" Па деформация магния увеличивалась [1].  [c.73]

Легирование алюминия магнием повышает прочностные характеристики при комнатной и особенно при низких температурах, а относительное удлинение уменьшается (табл. 81). Избыточное легирование магнием (10%), марганцем и титаном (табл. 82) ухудшает механические свойства сплавов.  [c.184]

Механические свойства литого магния при 20° С  [c.121]

За. Механические свойства деформированного магния при 20° С  [c.121]

Механические свойства магния при повышенных температурах приведен на фнг. 2—4.  [c.121]

Механические свойства магния при низких температурах (магний чистоты 99,9%)  [c.122]

Механические свойства литейных сплавов магния  [c.142]

Магний применяется для десульфурации никеля потому, что он образует с серой тугоплавкий сульфид магния, практически нерастворимый в никеле. Сульфид магния располагается внутри зерен в виде отдельных включений и не оказывает вредного влияния на механические свойства никеля.  [c.254]

Сплавы меди. В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь Ор бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости (см. рис. 7-12) значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (Ор —до 1350 МПа). Сплав меди о цинком — латунь — обладает достаточно высоким относительным удлинением  [c.200]

В настояш,ем разделе основное внимание уделяется никелю, цирконию, меди, бериллию, алюминию, магнию, молибдену, ниобию, танталу и вольфраму. Данные по влиянию излучения на механические свойства этих металлов и их сплавов сведены в табл. 5.6—5.13.  [c.253]

Применяют деформируемые и литые сплавы магния (табл. 5-5, 5-6). Деформируемые сплавы нагревают до 250—400 °С и отжигают при температуре 340—400 °С в течение 3—12 ч. Механические свойства литых магние-  [c.101]

Примером прямой линейной корреляции между скоростью изнашивания, рассчитанной по эмпирической формуле, связывающей износ с коэффициентом трения и механическими свойствами материала, и полученной на лабораторной установке, является график на рис. 76. Он заимствован из работы [50], проведенной для исследования изнашивания в отсутствие смазки керамических материалов торцевых уплотнений. К плоскости вращавшегося диска из керамического материала прижимались три неподвижных образца (материал образцов — окись магния, окись бериллия, окись алюминия). Давление при испытании повышалось ступенями от 0,35 до 3,5 кгс/см, а скорость диска была 0,5 и 1 м/с.  [c.104]

Легирование марганцем и цинком ведет к повышению коррозионной устойчивости сплавов. Механические свойства магния и его сплавов улучшаются при легировании медью, оловом, цирконием, кремнием и церием.  [c.134]

Магниевые сплавы. Основными элементами, входящими в магниевые сплавы, кроме самого магния, являются А1, Zn, Мп, Первые два увеличивают прочность, а последний снижает склонность к коррозии. Вредными примесями являются Fe, Си, Si, N1. Магниевые сплавы обладают весьма высокой удельной прочностью (удельный вес магния 1,74 Псм , а его сплавов — ниже 2,0 Г/см ). Вследствие легкости сплавов магния их называют электронами. Применение магниевых сплавов позволяет уменьшать вес деталей, по сравнению с деталями из алюминиевых сплавов примерно на 20—30% и по сравнению с железоуглеродистыми — на 50—75%. Так же как и алюминиевые, магниевые сплавы делятся на литейные и обрабатываемые давлением. У последних высокая ударная и циклическая вязкость. Обработка давлением существенно повышает прочность магниевых сплавов. Механические свойства Mg литого и деформированного приведены в табл. 4.13. На основе магния созданы жаропрочные сплавы (см. раздел 13 настоящего параграфа).  [c.320]


Механические свойства технического магния при 20 °С представлены в табл. 1.13.  [c.787]

Перспективным материалом с точки зрения повышенного сопротивления КР до толщины полуфабриката 125 мм является в настоящее время разработанный сплав 7049-Т73. Этот сплав с хромом содержит то же количество цинка, что и сплав 7001, и приблизительно то же, что и сплав 7075, количество магния и меди (см. рис. 1). Сплав обладает прочностными свойствами, в значительной степени близкими к свойствам сплава 7079-Т6 на полуфабрикатах толщиной до 125 мм (см. табл. 4, 5). К тому же сплав 7049-Т73 показывает превосходное сопротивление КР на гладких образцах, пороговый уровень напряжений для которых составляет 310 МПа (см. табл. 4, 5). Таким образом, сплав 7049-Т73 обладает такими же механическими свойствами, как сплав 7079-Т6, и сопротивлением КР подобно сплаву 7075-Т73. Кроме того, этот сплав не требует специальной обработки, поэтому могут быть использованы существующие матрицы для штамповок, если требуется перейти от чувствительных к КР материалов (например, 7079-Т6 или 7075-Т6) к более стойкому к КР сплаву 7049-Т73.  [c.267]

На Коломенском тепловозостроительном заводе им. Куйбышева коленчатые валы для тепловоза Т-45 отливаются из модифицированного магнием чугуна эвтектического состава (3,4—3,9% С), содержащего 0,035—0,06% остаточного магния. Механические свойства чугуна о р = 45 кПмм , 8 5=1% ад 3= 80 кГ/мм , / 1,5 мм.  [c.278]

Двойные алюминневакремкиевые сплавы, несмотря на их превосходные технологические (литейные) свойства, не могут удовлетворить требованиям во всех случаях, предъявляемым к литейным сплавам в отношении механических свойств. Алюминиевокремниевые сплавы с 10—13% Si (сплав АЛ2) применяют для отливок сложной формы, от которых не требуются высокие механические свойства. При более высоких требованиях к прочностным свойствам применяют специальные силумины — доэвтектические силумины с 4— 10% Si и добавкой меди, магния и марганца (спла1аы АЛЗ, АЛ4, АЛ5, АЛ6, АЛ9).  [c.592]

Как уже отмечалось, АЛ2 — нормальный силумин, сплавы АЛ4 и АЛ9— силумины с пониженным содержанием кремния и с небольшими дойавкамк магния и марганца, что улучшает их механические свойства.  [c.592]

Добавление марганца или магния в алюминиевомедиый сплав улучшает его механическую прочность, а также коррозионную устойчивость. Сплавы типа магналий, содержащие от 4 до 2% Mg и до 17о Мп и иногда 0,1% Т1, обладают хорошей коррозионной стойкостью и механическими свойствами, близкими к дюралюминию. Сплавы, содержащие более 5% Mg, склонны к межкристаллитной коррозии под напряжением.  [c.272]

Сплавы А1—Mg. Сплавы алюминия с магнием (табл. 23) имеют низкие литейные свойства, так как они содержат мало эвтектики. Характерной особенностью этих сплавов является хорошая коррозионная стойкость, повышенные механические свойства и обрабатываемость резанием. Добавление к сплаву (9,5—11,5 % Mg) модифицирующих присадок (Ti, Zr) улучшает механические свойства, а бериллия уменьишет окисляемость расплава, что позволяет вести плавку без защитных флюсов,  [c.336]

Церий и цирконий, будучи введены в сплавы магния с цинком и марганцем, измельчают зерно и повышают механические свойства, а цирконий еще и сопротивление коррозии. Редко.земсльные металлы и торий увеличивают жаропрочность магниевых сплавов.  [c.338]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Магний вводят в сплав АЛ4 для упрочнения. Он образует с кремнием химическое соединение Mg2Si, которое является упрочняющей фазой. Максимальный эффект упрочнения сплава этой фазой наблюдается после термической обработки. Механические свойства сплава следующие  [c.70]

Сплав АЛ32. Сплав обладает хорошей жидкотекучестью и достаточно высокой прочностью по отношению к сплавам АЛ2 и АЛ4. Присутствие в нем магния и титана позволяет получать высокую прочность без термической обработки. Сплав предназначен для литья тяжелонагруженных деталей автомобильных двигателей Блок цилиндров , картер, крышки, головки блока и других деталей. Механические свойства сплава следующие Ств = 270 МПа д = 2% твердость 74 НВ.  [c.70]

Замечание 6.2.2. Полученные выше уравнения могут применяться не только для описания процесса тепло- и мге-сообмена в теплозащитных покрытиях, но и для моделирования на ЭВМ горения смесевых твердых топлив (СТТ) [З П. Типичные составы СТТ содержат по массе до 70—80% твердого окислителя (обычно это перхлорат аммония (ПХ ) NH4 IO4) и 10—17% горючего (обычно битум, бутадиенов яй каучук, фенолоформальдегидная смола). Для повышения теплоты сгорания в СТТ, как правило, вводят метал, 1Ы (алюминий, бор, магний, бериллий, цинк и др.) в порошкообразном состоянии, а также пластификаторы (для улучшения механических свойств), катализаторы и различные технологические добавки. Роль связующего в такой многокомпонентной гетерогенной системе играет полимерное горючее, которое поэтому называют также связкой.  [c.242]

Алюминий и его ставы обладают хорошей коррозионной стойкостью в атмосфере, нейтральных средах за счет амфотерных свойств образующейся пленки гидроксида алюминия. В растворах азотной, фосфорной и серной кислот он имеет достаточно высокую коррозионную стойкость, а в соляной, фтористоводородной, концентрированной серной, муравьиной, щавелевой кислотах растворяется. При закалке алюминия примеси меди и кремния переходят в твердый раствор, что повышает его коррозионную стойкость. Л.тюминий легируют медью (дуралюмин), магнием (магналии), цинком, кремнием и марганцем, главным образом для улучшения механических свойств.  [c.18]


Для изготовления высокочастотных высоковольтных изоляторов применяют стеатитовую керамику, так как фарфор имеет сильную. зависимость электрических характеристик от температуры из-за наличия большого количества полевошпатового стекла с повы-1иенной электропроводностью. Стеатитовая керамика изготовляется на основе-тальковых минералов, основной кристаллической фазой которых является метасиликат магния MgO-SiOj. Стеатитовые материалы характеризуются высокими значениями р, в том числе при высокой температуре, малым tg б, за исключением материала группы 210 ГОСТ 20419—83, предназначенного для производства крупных высоковольтных изоляторов. Стеатитовая керамика характеризуется высокими механическими свойствами, стабильно-  [c.240]

Вместе с тем давление воздействует на структуру и механические свойства чугуна подобно модифицированию магнием. Отливки, полученные в условиях кристаллизации под пуансонным давлением 150 MH/м , имеют максимальную прочность 708 МН/м , в то время как предварительно модифицированные магниевоникелевой лигатурой с 10% Mg — соответственно 716 МН/м2.  [c.133]

Фиг. 4. Механические свойства горяче-арессоианниго магния при повышенных температурах после нагревов в течение 100 час. при температурах испытаний  [c.122]

Большое распространение имеют плакированные легкие металлы на основе дуралюмина и других прочных сплавов с плакирующим слоем из чистого алюминия или коррозионностойких сплавов алюминия с марганцем, магнием или кремнием. В силу своей высокой коррозионной стойкости и способиости легко выдерживать разнообразные технологические операции (гибку, вытяжку, выдавливание) плакированный дуралюмин широко применяют везде, где наряду с хорошими механическими свойствами требуется высокая химическая устойчивость самолето-, судо-, автостроение, химическое аппаратостроение, пищевая промышленность, горное дело.  [c.628]

Харрингтон [491 исследовал влияние облучения на механические свойства компаундов на основе сульфохлорировапного полиэтилена, вулканизованных как окисями свинца и магния, так и эпоксидной смолой. В последнем случае предел прочности материала увеличивается при дозах облучения до 1,9-10 эрг/г, но уменьшается при более высоких дозах, теряя до 22% первоначальной величины при дозе 8,7-10 эрг/г. Предел прочности материалов, вулканизованных окисями магния и свинца, уменьшается при средних дозах и быстро увеличивается при высоких. Относи-  [c.86]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]


Смотреть страницы где упоминается термин Магний Механические свойства : [c.33]    [c.350]    [c.335]    [c.338]    [c.358]    [c.215]    [c.74]    [c.75]    [c.253]   
Справочник машиностроителя Том 2 (1952) -- [ c.272 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.441 ]

Основы металловедения (1988) -- [ c.283 ]

Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Магний

Магний Свойства



© 2025 Mash-xxl.info Реклама на сайте