Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы и режимы сварки

Технологическая свариваемость определяется совокупностью свойств основного металла, характеризующих его реакцию на термодеформационный цикл сварки. Кроме того, она зависит от способа и режима сварки, свойств присадочного металла, применяемых флюсов, электродных покрытий и защитных газов, от конструктивных особенностей свариваемого изделия и условий его последующей эксплуатации.  [c.434]


На диаграмме АРА фиксируются критические значения Шб/5 или 8/5, соответствующие появлению 5% мартенсита (jid i, < ), образованию 90% мартенсита (ш 2, м2), появлению 5% феррита 4- перлита (и фп , /фп ) и образованию 100% феррита + -[-перлита (м ф.п2, ф.пг). При наличии данных о параметрах СТЦ для определенных типа и размеров сварного соединения, способа и режима сварки можно определить состав структуры ОШЗ однослойного соединения.  [c.520]

Степень механохимической неоднородности зависит от исходных свойств металла, способа и режимов сварки, применяемых сварочных материалов и др. Механическая и электрохимическая неоднородность взаимосвязаны между собой. Под действием термодеформационного цикла сварки в сталях и других сплавах образуются характерные зоны, различающиеся пластической деформацией и дислокационной структурой. Происходит изменение свойств металла вследствие процессов плавления и кристаллизации в сварном шве (III),  [c.93]

Сварка ведет к созданию неоднородных структур в самом сварном шве и в околошовной зоне. Неоднородность зависит от способа и режима сварки. Наиболее резкие отличия в свойствах сварного шва получают при ручной дуговой сварке. Электрошлаковая и автоматическая дуговая сварки дают наиболее качественный и однородный шов.  [c.26]

Совокупность технологических характеристик основного металла, обеспечивающая возможность при принятом технологическом процессе создавать надежное в эксплуатации и экономичное сварное соединение, называют свариваемостью. Свариваемость не является неотъемлемым свойством металла, т. к. определяется также способом и режимом сварки. Практически под хорошей свариваемостью понимается возможность при обычной технологии получить сварное соединение, равнопрочное с основным металлом, без трещин и без снижения пластичности в околошовной зоне.  [c.159]

Способы и режимы сварки разных соединений  [c.348]

Закрепление концов рулонной полосы после навивки обечаек на опытном участке ХТЗ выполняли ручной дуговой сваркой. Наружные и внутренние нахлесточные швы обечаек, как показано в работе [3], сваривали двумя дугами в раздельные ванны . Разработанный способ и режимы сварки (табл. 1) обеспечивали получение швов с требуемой высотой усиления и плавным переходом к основному металлу. Результаты контроля швов неразрушающими методами подтвердили достаточную их стойкость против образования дефектов. Так, количество обечаек с дефектами во внутренних нахлесточных швах, приводящих к нарушению герметичности (данные вакуум-пузырькового контроля), не превышало 2,7 %, а с другими дефектами, требующими исправления (данные рентген-телевизионного контроля) — 4,7 %. В обоих случаях образование дефектов связано с отклонениями от заданных параметров сварочных процессов в част-  [c.163]


Сварка коррозионно-стойких, жаропрочных сталей и сплавов. Стали и сплавы этого класса обладают хорошей свариваемостью. Однако теплофизические свойства и склонность к образованию в шве и околошовной зоне горячих трещин определяют некоторые особенности их сварки. Характерные для большинства сталей и сплавов низкая теплопроводность и высокий коэффициент линейного расширения обусловливают при прочих равных условиях (способе сварки, геометрии кромок и др.) расширение зоны проплавления и областей, нагретых до различных температур, и увеличение суммарной пластической деформации металла шва и околошовной зоны. Это увеличивает коробление конструкций. Поэтому следует применять способы и режимы сварки, характеризующиеся максимальной концентрацией тепловой энергии. Оценка возможностей дуговых способов сварки по толщине детали дана в табл. I.  [c.28]

Химический состав сварочной ванны в первую очередь определяется составом электродной проволоки и основного металла в зависимости от доли его участия в шве. Доля участия основного металла определяется способом и режимом сварки и может изменяться от 0,15 до 0,6 для ручной сварки покрытыми электродами и автоматической под флюсом соответственно. Конечный состав шва устанавливается  [c.227]

Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, называют зоной термического влияния. Величина ее зависит от свойств материала, его толщины, способа и режима сварки, характера источников сварочной теплоты. Чем больше, например, концентрация теплоты источника нагрева, выше его температура, скорость сварки, тем меньше зона влияния. Так, при дуговой сварке она меньше, чем при газовой. Минимальная площадь нагрева  [c.496]

Форма сварочной ванны при дуговых процессах характеризуется длиной, шириной и глубиной проплавления основного металла. Объем сварочной ванны в зависимости от способа и режима сварки изменяется от 0,1 до 10 см . Время нахождения металла в жидком состоянии в различных ее участках неодинаково. Приближенно среднюю продолжительность существования сварочной ванны с, можно рассчитать с помощью соотношения  [c.23]

Таким образом, различные участки основного металла характеризуются различными максимальными температурами и различными скоростями нагрева и охлаждения, т.е. подвергаются своеобразной термообработке. Поэтому структура и свойства основного металла в различных участках сварного соединения различны. Зону основного металла, в которой под воздействием термического цикла при сварке произошли фазовые и структурные изменения, называют зоной термического влияния. Характер этих превращений и протяженность зоны термического влияния зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п.  [c.259]

Основным фактором, определяющим после окончания сварки конечную структуру металла в отдельных участках зоны термического влияния, является термический цикл, которому подвергался металл этого участка при сварке. Решающими факторами термического цикла сварки являются максимальная температура, достигаемая металлом в рассматриваемом объеме, и скорость его охлаждения. Ширина и конечная структура различных участков зоны термического влияния определяются способом и режимом сварки, составом и толщиной основного металла. Общая протяженность зоны термического влияния может достигать 30 мм. При более концентрированных источниках теплоты протяженность зоны меньше.  [c.262]

Поэтому для уменьшения коробления изделий из высоколегированных сталей следует применять способы и режимы сварки, характеризующиеся максимальной концентрацией тепловой энергии. Примерно в 5 раз более высокое, чем у углеродистых сталей, удельное электросопротивление обусловливает больший разогрев сварочной проволоки в вылете электрода или металлического стержня электрода для ручной дуговой сварки. При автоматической и полуавтоматической дуговой сварке следует уменьшать вылет электрода и повышать скорость его подачи. При ручной дуговой сварке уменьшают длину электродов и допустимую плотность сварочного тока.  [c.360]


Минимизация указанных видов неоднородности и обеспечение свариваемости достигается обоснованным выбором сварочных материалов, способов и режимов сварки и термической обработки с учетом жесткости соединений, температуры эксплуатации и агрессивности среды.  [c.393]

Выбор способов и режимов сварки  [c.393]

Поэтому при выборе способов и режимов сварки отдают предпочтение технологии, при которой толщина кристаллизационной прослойки минимальна. Этого достигают следующими методами  [c.393]

При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]

Технологические меры борьбы с трещинами обычно направлены-на изыскание способов и режимов сварки плавлением и конструкционных форм сварных соединений, снижающих темп нарастания внутренних деформаций в процессе затвердевания.  [c.131]

Работоспособность сварных соединений в условиях эксплуатации определяется способом и режимами сварки, составом присадочного и основного материалов, структурными превращениями в металле шва и околошовной зоне, возможностью термической обработки конструкции сварного узла.  [c.327]

Способ и режимы сварки выбираются в зависимости от легирования титановых сплавов и содержания в них вредных примесей. Кроме того, необходимо учитывать их склонность к росту зерна, к закалке и  [c.155]

Разработку технологического процесса сварки металлических конструкций начинают с рассмотрения чертежей КМД. При рассмотрении чертежей устанавливаются марки применяемых металлов, протяженность сварных швов, толщина сопрягаемых листов и расчленение конструкции на технологичные узлы для выполнения сборочно-сварочных работ. В соответствии с применяемыми марками металлов выбираются сварочные материалы (электроды, сварочная проволока, флюс и газы), подбираются способы и режимы сварки, а также определяются разряд работы, необходимое количество сварщиков и оборудования для выполнения всего комплекса сварочных работ с учетом требований техники безопасности. Намечаются методы контроля качества сварных соединений и швов, последовательность применения этих методов и количество стыков (швов), подлежащих тому или иному методу контроля. Затем коротко и в строгой технологической последовательности все операции сборки и сварки заносятся в технологическую карту с указанием применяемых сварочных материалов, оборудования, режимов сварки, разряда и количества сварщиков, а также методов контроля.  [c.26]

Структура зоны термического влияния и ее ширина зависят от способа и режима сварки, химического состава и толщины свариваемого изделия.  [c.196]

Все эти сведения получают путем проведения экспериментальных исследований, выполняемых применительно к конкретным способам и режимам сварки.  [c.460]

Академией наук Украинской ССР предложен способ, утвержденный в 1956 г. Комитетом стандартов в качестве проекта ГОСТа для определения стойкости металла околошовной зоны против образования трещин при электродуговой сварке плавящимся электродом углеродистых и легированных сталей. Способ применим для проверки основного металла, электродной проволоки, электродов, флюса и режимов сварки раздельно или в совокупности и при сравнительных испытаниях сварочных материалов, способов и режимов сварки.  [c.120]

При применении в связи с эксплуатационной необходимостью материалов с пониженной свариваемостью конструировать необходимо с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять способы и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранить неоднородность свойств в сварных заготовках или узлах. Прочность в зоне сварного соединения может быть повышена механической обработкой после сварки прокаткой, проковкой и др.  [c.372]

S-IO мм после интенсивной пластической деформации и 10 мм- после закалки. Сварное соединение включает в себя зоны, испытавшие такие термические и термомеханические воздействия, поэтому в различных зонах сварного соединения плотность дислокаций может достигать указанных значений. Характер распределения плотности дислокаций в сварном соединении может изменяться в весьма широких пределах. Он зависит от химического состава и предварительной термической обработки свариваемого металла, способа и режима сварки, условий охлаждения изделия. Так, например, максимальная плотность дислокаций в сварном соединении стали 0Х18Н10Т наблюдается в зоне, максимальные температуры нагрева которой при сварке составляли 770...870 К.  [c.474]

В этих выражениях асв—десв/дТ аф=де дТ, т. е. асв и аф—это темпы деформации, обусловленные усадкой и формоизменением, а — предельный темп деформации, характеризуюш,ий пластичность систем в т.и.х. Значение а зависит от схемы кристаллизации шва, его химического состава и степени химической неоднородности, формы шва, схемы главных напряжений, определяемых в значительной степени способом и режимом сварки.  [c.483]


Влияние указанных факторов на работоспособность сварных сосу дов и трубопроводов следует л-читывать не только на стадии их проектирования, но и в процессе выбора способа и режимов сварки, присадочного и основного материала, температуры предварительного подогрева, режимов послесварочной термической обработки, а также на других этапах технологической подготовки производства. В связи с этим для успешного создания оболочковых конструкций необходимо тесно увязывать работу технолога и конструктора. Последнее позволит учесть в процессе гфоектирования недостатки технологического процесса, обоснованно и всесторонне подойти к возможности перехода на более прочные металлы, а в ряде случаев специальными технологическими приемами устранить отрицательное воздействие термического цикла сварки на прочность оболочковых конструкций.  [c.4]

При сварке конструкций из прочненных или нагартованных материалов в результате термического воздействия в околошовной зоне появляются мягкие прослойки /22 — 27/. При этом ширина данных прослоек (разупрочненных зон) варьируется в зависимости от способа и режимов сварки. Так, например, при полуавтоматической сварке труб из стпи 14Г2Ф /27/ ширина зоны разупрочнения составляет 2,8 мм, при ручной дуговой сварке с применением электродов марки УОНИ 13/85 —  [c.73]

При Регулирование термодеформацнонного цикла сварки и сварке условий кристаллизации применение рационального метода, способа и режима сварки по погонной энергии и степени концентрации источника тепла применение тепловых способов регулирования дополнительный, предварительный, сопутствующий, последующий подогрев или охлаждение при сварке специальные методы применение присадочных материалов с развитой поверхностью, ультразвуковая наработка, электромагнитное перемешивание  [c.503]

Необходимо отметить, что оценка сопротивляемости материала коррозионному растрескиванию путем сопоставления критериев растрескивания (пороговых и критических коэффициентов интенсивности напряжений в агрессивной среде, характеристик стадии зарождения трещин и т.д.) представляется особенно удобной для сварного соединения. Это связано с тем, что в отличие от основного металла прочностные характеристики сварного соединения дополнительно определяются взаимодействием большого числа технологических факторов — способом и режимами сварки, сварочными материалами и качеством оборудования. В этих условиях произвести объективный выбор технологии, используя некритериальные признаки, крайне затруднительно, что связано с низкой сопоставимостью оценки.  [c.30]

При детальном методе расчета за норму принимается максимально допустимый расход материалов на изготовление единицы готовой продукции установленного качества с учетом организационно-технических условий производства. Исходными данными для расчета норм расхода служат чертежи свариваемых изделий, определяющие типы и размеры швов, положение швов в пространстве и их протяженность, а также марки свариваемых материалов технологический процесс на сварку, определяющий способ и режимы сварки марки применяемых при сварке материалов действующие ГОСТы и ведомственные нормали размеры потерь сварочных материалов задания вышестоящих организаций ПО среднему снижению норм расхода материалов планы организационно-технических мероприятий по экономии материальных ресурсов отчетные данные о фактических расходах материалов на изделие акты проверки фактического расхода материалов при выполнении процесса сварки. Для определения потребности в сварочных материалах путем детального расчета можно пользоваться Инструкцией по нормированию расхода материалов в машиностроении , разработанной Научно-исследова-тельским институтом планирования и нормативов при Госплане СССР. Инструкция разработана на основе изучения и обобщения опыта нормирования расхода материалов при сварке, наплавке и резке металлов, накопленного научно-исследовательски-  [c.275]

В настоящее время накоплен обширный экспериментальный материал по данным испытания различных легированных сталей, например марганцевых, кремниевомарганцевых, хромомолибденовых, с применением количественных (ИМЕТ-4, ЛТП МВТУ) и технологических проб (Рива, TS, крестовая). При этом для каждой из систем легирования изучено влияние содержания различных легирующих элементов (С, Мп, Si, Сг, Мо, В и др.) и вредных примесей (S, Р и др.) на сопротивляемость образованию холодных трещин, и определены эмпирические зависимости эквивалента углерода, устанавливающие допустимые соотношения между элементами, входящими в состав сталей. Эти соотношения не имеют универсального характера, так как зависят от ряда факторов, например конструкции сварного соединения и его жесткости, структурного класса присадочного или электродного материалов, способа и режимов сварки. Эти факторы изменяют не только уровень напряжений и характер их распределения в сварных соединениях, но и кинетику структурных изменений, степень развития химической неоднородности по границам зерен околошовной зоны вблизи линии сплавления со швом, содержание водорода и другие особенности, обусловливающие образование холодных трещин при сварке. Наиболее существенны при прочих равных условиях жесткость соединения и структурный класс металла шва. В связи с этим использование данных об эквивалентах углерода ограничивается обычно частными случаями, связанными с предварительными сравнительными оценками различных плавок стали или способов их выплавки в исследовательских целях. После этого, как правило, проводятся испытания стали с помощью технологических проб, в наибольшей степени соответствующих реальным условиям сварки конструкции соединений и технологическим факторам.  [c.174]

Для получения сварных соединений, равноценных по работоспособности основному металлу, при конструировании сварных заготовок и узлов следует по возможности выбирать хороию свариваемые материалы. К таким материалам относятся низкоуглеродистые стали спокойной выплавки и многие низколегированные стали, ряд сплавов цветных металлов, применение которых не ограничивается какими-либо требованиями к способу и режимам сварки.  [c.372]

Кроме продольных деформаций при сварке возникают и поперечные, вызываемые неравномерным нагревом пластин или элементов. Менее нагретые зоны свариваемого элемента, отстоящие на некотором расстоянии от дуги, создают реактивные силы, препятствующие свободной деформации изделия. В результате происходит пластическая деформация. После остывания элемент в поперечном измерении сокращается, пропсходит его поперечная усадка, зависящая от способа и режимов сварки, размеров элемента и физико-механических свойств свариваемого материала.  [c.20]

Основное время стыковой сварки (табл. XXVIII.19, XXVIII.20) зависит от способа и режима сварки, площади поперечного сечения стыка, механических свойств и конфигурации свариваемого материала.  [c.750]


Смотреть страницы где упоминается термин Способы и режимы сварки : [c.292]    [c.268]    [c.6]    [c.47]    [c.217]    [c.379]    [c.380]    [c.382]    [c.56]    [c.339]    [c.261]   
Смотреть главы в:

Основы сварочного дела Издание 4  -> Способы и режимы сварки



ПОИСК



151 - Применение 150, 151 - Режимы сварки 152 - Способы сварки

216 — Назначение 212 — Обработка давлением 216 — Режимы термообработки 216 — Свариваемость 216 Способы сварки 216 — Химический состав 213 — Хладностой кость 215 Экономичность процесса

69 - Способы сварки 69 - Химический тепловому режиму 71 - Сварочные материалы 71 - Способы сварки 71 - Химический состав

73 - Применение 72 - Рекомендации тепловому режиму 74 - Сварочные материалы 74 - Способы сварки 74 - Химический состав

Режим сварки

Сварка сталей однородных — Влияние режима сварки на прочность сварных соединений 127—132 — Свариваемость 127—132 — Способы

Сварка стали газовая — Подготовка и разделка кромок 101—103 Режимы 103 — Способы сварки и их выбор

Сплавы молибдена, вольфрама и хрома 156 Достоинства и недостатки 156, 157 Режимы сварки 157 — 159 - Способы

Способы и режимы восстановления деталей сваркой и наплавкой

Способы и режимы сварки разных соединений

Способы настройки режима сварк

Способы сварки



© 2025 Mash-xxl.info Реклама на сайте