Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хром — кислород

Результаты электронномикроскопических исследований свидетельствуют о том, что для одинаковой степени деформации плотность дислокаций при деформации в диапазоне температур деформационного старения (т. е. в процессе так называемого динамического- деформационного старения ) выше, чем при холодной деформации с последующим нагревом до температуры 9с (т. е. при статическом деформационном старении ). Динамическое деформационное старение есть результат образования атмосфер атомов внедрения (углерод, азот для железа и для вольфрама, молибдена, хрома, дополнительно кислород) вокруг движущихся и размножающихся при пластической деформации дислокаций. За счет диффузии атомов внедрения, облегченной при повышении температуры деформации до 9о, образуются атмосферы вокруг дислокаций, образованных деформацией.  [c.464]


Различие механизмов растворения железа и никеля, с одной стороны, и хрома, с другой, может быть связано с повышенным сродством хрома к кислороду. Возможно, что хемосорбция ионов ОН на этом металле приводит к более полному заполнению ими поверхности с образованием более прочной связи. Имеются основания предполагать, что такие хемосорбционные слои могут не только ускорять, но и замедлять анодный процесс. Это следует прежде всего из результатов измерений скорости анодного растворения в условиях непрерывной механической зачистки поверхности. Было установлено [49], что такая зачистка приводит к значительному снижению перенапряжения анодного растворения железа, никеля и хрома в серной и соляной кислотах в активном состоянии (рис. 2), причем для никеля и железа при некоторой предельной скорости зачистки исчезает зависимость скорости растворения от содержания  [c.11]

Сумма грамм-атомов хрома и кислорода в 100 кг окиси хрома равна  [c.73]

Для электролиза хрома применяется обычно хромовый ангидрид — соединение б-валентного хрома. С кислородом хром образует, кроме этого, следующие соединения СгО—закись СггОз— окись хрома.  [c.39]

По имеющимся данным совершенно чистый хром, не содержащий примесей внедрения (в первую очередь углерода, азота и кислорода), пластичен. Однако сродство хрома к кислороду, азоту, а также углероду очень велико. Например, выплавленный на воздухе хром содержит до 2 % N, наиболее чистый электролитический хром может содержать до 1,5 % и более оксида хрома.  [c.235]

В случае хромистых сталей в пассивирующих условиях надо предполагать накопление на поверхности стали атомов хрома, хемосорбирующих кислород и являющихся в таких условиях более устойчивыми, чем ато мы железа. Именно по этой  [c.30]

Как уже было сказано выше, содержание хрома должно точно соответствовать требованиям технологии и необходимым коррозионным свойствам. Относительно высокое сродство хрома к кислороду способствует его значительному выгоранию, а поэтому необходимо,  [c.118]

Основные трудности сварки связаны со склонностью к образованию горячих трещин в швах и околошовных зонах (аустенитные стали) и склонностью к образованию холодных трещин в ЗТВ (мартенситные и аустенитно-мартенситные стали), с появлением после сварочного нагрева в высокотемпературной зоне 6-феррита, выделением карбидов из аустенита в определенных участках ЗТВ и ухудшением в этих местах стойкости против межкристаллитной коррозии (МКК) и других свойств. Определенные осложнения вносит повышенное, по сравнению с железом, сродство хрома к кислороду и вследствие этого его повышенная окисляемость и возможная в связи с этим загрязненность металла шва. В аусте-  [c.265]


РеО) = (СггОз) +3[Ре], которая протекает С самого начала плавки. Но, поскольку сродство хрома к кислороду меньше, чем кремния и марганца, интенсивное окисление его начинается после окисления кремния и марганца. Поэтому содержание СггОз в шлаках  [c.420]

Если в начальный период она описывается параболической зависимостью (рис. 3, кривая 4—6, участок 0—120 час), обусловленной диффузией хрома и кислорода, то по мере ослабления защитного воздействия диффузионного слоя, приблизительно через 200 час с начала испытаний, устанавливается примерно линейная зависимость (рис. 3). Наклон кривой на конечном участке идентичен кривой окисления незащищенной стали, где процесс определяется химической реакцией взаимодействия кислорода с железом. Это свидетельствует о том, что ресурс защитного слоя исчерпан.  [c.117]

Хром легируют с целью снижения вредного влияния примесей внедрения, Для этого используют элементы с большим химическим сродством к примесям 2г, НГ, V и Ьа очищают матрицу хрома от азота, образуя нитриды. ЫЬ, Та, Т1 и 2г хорошо связывают углерод, а Т1, 2г, V, С1 и Ьа очищают хром от кислорода. Для повышения жаропрочности хром легируют титаном, ванадием, иттрием, цирконием, вольфрамом н никелем. Добавки вводят в количествах, ие превышающих их растворимость в твердом хроме. Добавки РЗМ измельчают структуру, повышают коррозионную стойкость и температуру рекристаллизации.  [c.405]

Углеродистая сталь промышленного производства — сложный по химическому составу сплав. Кроме основы — железа (содержание которого может колебаться в пределах 97,0— 99,5%), в ней имеется много элементов, наличие которых обусловлено технологическими особенностями производства (марганец, кремний), либо невозможность полного удаления их из металла (сера, фосфор, кислород, азот, водород), а также случайными примесями (хром, никель, медь и др.).  [c.180]

На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода полезных — кремния, марганца и др.). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор из металлического лома — хром, никель и др. в процессе раскисления — кремний и марганец.  [c.14]

Тугоплавкие металлы (титан, ванадий, хром и др.) имеют высокую химическую активность в расплавленном состоянии. Они активно взаимодействуют с кислородом,азотом, водородом и углеродом. Поэтому плавку этих металлов и их сплавов ведут в вакууме или в среде защитных газов.  [c.173]

Расчеты показывают, что эта реакция не будет идти на хроме или нержавеющей стали, пассивная пленка которых более стабильна. Нарушение пассивности, связанное с превращением адсорбированного кислорода (окисляющая способность которого 0,01 Кл/см ) в оксид, можно выразить схемой  [c.82]

Согласно адсорбционной теории, пассивность хрома и нержавеющих сталей, благодаря их повышенному сродству к кислороду, может достигаться путем непосредственной хемосорбции кислорода из воздуха или водных растворов. Количество кислорода, адсорбированного таким образом, имеет тот же порядок величины, что и пассивная пленка на железе, образованная путем анодной пассивации или пассивации в концентрированной азотной кислоте или хроматах [27]. Сходным образом атмосферный кислород может адсорбироваться непосредственно на железе и запассивировать его в аэрируемых щелочных растворах, а также в растворах близких к нейтральным с повышенным парциальным давлением кислорода .  [c.82]

Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]


В атмосфере серы по тем же причинам, что и в случае кислорода, легирование никеля хромом (до 2 %) ускоряет реакцию при  [c.197]

В отличие от железа и никеля, хром, судя по имеющимся данным, не подвергается питтинговой коррозии в водных растворах даже при больших концентрациях активирующих анионов. Учитывая большое сродство хрома к кислороду, обусловливающего высокую стабильность пассивного состояния этого металла, неоднократно высказывалось предположение о том [ 130,135,136] что критические потенциалы питтингоофаэования для хрома в растворах галогенидов лежат положительнее потенциала пере пассивации этого металла, что исключает возможность их определения обычными электрохимическими методами.  [c.31]

Чистое железо стойко в натрии с малым содержанием кислорода до температуры 590° С [1,49]. При температуре 500° С и концентрации кислорода 0,014% скорость коррозии углеродистой стали составляет 0,1 мг1см мес. Сталь Х5М корродирует в этих условиях с меньшей скоростью. С ростом концентрации кислорода до 0,1 и 0,5% скорость коррозии этих сталей возрастает до 1,800 мг/см мес и 5,800 мг/см мес соответственно. Дальнейшее увеличение содержания хрома в стали до 13% существенно не изменяет ее коррозионной стойкости в этих условиях. При температуре 715° С й концентрации кислорода 0,01 % скорость коррозии составляет , мг1сзл мсс [1,47]. При температуре свыше 540° С возможно охрупчивание ферритных сталей однако, исходя из условий коррозионной стойкости, при этих температурах аустенитные нержавеющие стали можно заменить хромистыми сталями с содержанием 12—25% хрома. Количество кислорода в натрии при этом должно быть снижено [1,49].  [c.48]

Металлический хром получают алюми-нотермически — взаимодействием окнси хрома с металлическим алюминием. Окись хрома Сг Оз образуется при непосредственном взаимодействии хрома и кислорода при нагревании. Окись хрома не растворяется в воде и кислотах растворяется в щелочах, образуя гидрат окиси хрома Сг(ОН)з, обладающий амфотерными свойствами. Для хрома наиболее характерны соединения, в которых он шестн-валентен.  [c.382]

Хром. Первые сообш,ения о дисперсноупрочненном хроме, содержащем б %МдО и 0,5 %Ti (материал Хром-30), появились в 1962 г. Из-за большого сродства хрома к кислороду выбор оксида-упрочнителя затруднен, хотя эффективность применения тугоплавких оксидов достаточно очевидна (растворимость кислорода в хроме всего 0,001 % при 1100 °С). В присутствии включений дисперсных частиц фазы-упрочнителя изменяется характер развития процесса скольжения (рис. 55) длина полос скольжения уменьшается и снижается концентрация напряжений на границах зерен матрицы, что понижает вероятность зарождения трещин и приводит к ювышению предела текучести, так как  [c.177]

Анализ большого ряда экспериментальных работ по определению величины теплового эффекта образования Окиси xipa-ма из металлического хрома и кислорода имеется в монографии Гельда и Есина [27], которые приводят в качестве наиболее вероятного значения теплового эффекта реакции образования окиси хрома в стандартных условиях величину АЯгэз = — 1 125 800 2500 дж г-моль. По данным Кубашевско-го и Эванса [25], тепловой эффект этой реакции равен  [c.46]

Лом и отходы легированных сталей можно резать, непрерывно подавая в пламя резака пруток из малоуглеродистой стали диаметром 6—7 мм. При окислении прутка в струе режущего кислорода выделяется дополнительное тепло, которое способствует расплавлению поверхностного слоя окислов хрома. Окислы железа, образующиеся при сгорании прутка, также разжижают тугоплавкие окислы хрома. Давление кислорода 10 — 12 кГ1см . Резак держат перпендикулярно к поверхности разрезаемого металла, а пруток — под углом 60 — 65 град, к струе кислорода.  [c.243]

Хром но отношению к кислороду обладает несколько большим сродством, чем железо, и образует окисел СгаО с высокой температурой плавления. Хром также обладает большим сродством к углероду, чем железо, и является карбидообразующим элементом. Он может входить в состав карбидов типа ] емептпт (Fo, Сг)зС и образует карбиды типов СГ7С3 и СггзС [иногда с частичной заменой атомов хрома другими, в частности железа, например (Fe, Сг)2зС(). Карбиды хрома термически более стойкие по срав-иению с карбидом железа, они растворяются медленнее и при более высоких температурах. В связи с этим для гомогенизации твердых растворов Fe—Сг—С требуется более высокая температура (рис. 128) и более длительная выдержка, чем для углеродистых сталей (- 900° С).  [c.258]

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов азотом, кислородом атомы железа — металлами марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цемеититом. Обычное обозначение легированного цементита М3С, где под буквой М подразумевают железо и другие металлы, замещающие атомы железа в решетке цементита.  [c.166]

В результате рассмотрения взаимодействия разных элементов с тугоплавкими металлами и прямые исследования по изучению влияния разных элементов (Е. М. Савицкий, Н. Н. Моргунова) позволяют сформулировать некоторые иоложения 1) легировать тугоплавкие металлы в количестве до нескольких процентов можно лишь тугоплавкими, причем для металлов VA группы (ванадий, ниобий, тантал) возможно более глубокое легирование, чем для металлов VIA группы (хрома, молибдена, вольфрама) 2) кислород является более вредным элементом, чем углерод, поэтому последний вводят в небольшом количестве (до 0,05—0,1%), для раскисления н жесткого легирования.  [c.524]

В перегреной сварочной ванне протекает ряд металлургических процессов испарение или окисление (выгорание) некоторых легирующих элементов, например углерода, марганца, кремния, хрома и др., и насыщение расплавленного металла кислородом, азотом и водородом из окружающего воздуха. В результате возможно изменение состава сварного шва по сравнению с электродным и основным металлом, а также понижение его механических свойств, особенно вследствие насыщения шва кислородом. Для обеспечения заданных состава и свойств шва в покрытие вводят легирующие элементы и элемеиты-раскислители.  [c.190]


Наиболее перспективными сплавами для работы в интервале 1000—1400° С являются, по-видимому, сплавы на основе молибдена и ниобия, а для работы при более высоких температурах — сплавы тантала и вольфрама. При температурах выше 600" С тугоплавкие металлы, за исключением хрома и некоторых металлов платиновой группы, интенсивно окисляются (рис. 77) и охруп-чиваются растворяющимся кислородом.  [c.117]

Влияние состава газовой среды на скорость коррозии металлов велико, специфично для разных металлов и изменяется с температурой, как это видно, например, из данных рис. 86. Никель, относительно устойчивый в средеОа, Н20,С02,очень сильно корродирует в атмосфере SO . Медь наиболее быстро корродирует в атмосфере кислорода, но устойчива в атмосфере SOj-Хром же обладает высокой жаростойкостью во всех четырех атмосферах.  [c.128]

Таким образом, VjOb, участвуя в процессе окисления металлов, на образование их окислов почти не расходуется. Взаимодействуя с различными окислами железа, никеля и хрома, V2O5 разрушает защитную пленку, образуя в ней поры, по которым относительно легко проникают кислород газовой фазы и жидкая VjOg, окисляющие металл.  [c.129]

Отрицательнее —0,44 в Металлы повышенной термодинамической неустойчивости (неблагородные) Могут корродировать в нейтральных водных средах, даже не содержащих кислорода Литий, рубидий, калин, цезий, радий, барий, стронций, ка.чьций, натрий, лантан, магний, плутоний, торий, нептуний, бериллий, уран, гафний, алюминий, титан, цирконий, ванадий, марганец, ниобий, хром, цинк, галлий, железо  [c.40]

Третье условие не удовлетворяется при резке алюминия, магния и их сплавов, а также сталей с большим содержанием хрома и никеля. При нагревании этих сплавов в процессе резки на их поверхности образуется пленка тугоплавкого окисла, препятствующая поступлению кислорода к неокисленному металлу.  [c.103]

Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы HjO и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М -f гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в H2SO4, или пленка фторида железа на стали в растворе HF являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе KI + I2 или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле-  [c.80]

Ионы галогенов в меньшей степени влияют на аНодное поведение титана, тантала, молибдена, вольфрама и циркония, и их пассивное состояние может сохраняться в среде с высокой концентрацией хлоридов, в отличие от железа, хрома и Fe—Сг-спла-вов, теряющих пассивность. Иногда это объясняют образованием на перечисленных металлах (Ti, Та, Мо и др.) нерастворимых защитных основных хлоридных пленок. Однако в действительности подобная ситуация возникает благодаря относительно высокому сродству этих металлов к кислороду, что затрудняет замещение ионами С1 кислорода из пассивных пленок, вследствие более высоких критических потенциалов металлов, выше которых начинается питтингообразование.  [c.85]

Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГ2О3) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Fe-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемо-сорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия d-электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией d-электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % Ni.  [c.91]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

В ряду напряжений никель отрицател ен по отношению к водороду, но положителен по отношению к железу. В отсутствие растворенного кислорода он реагирует с разбавленными неокислительными кислотами (например, H2SO4 и НС1) весьма медленно. Никель устойчив в деаэрированной воде при комнатной температуре в этих условиях продуктом коррозии является N1 (ОН)г. Никель пассивен во многих аэрированных водных растворах, однако пассивирующая пленка не столь устойчива, как, например, на хроме. (Фладе-потенциал никеля Ер = 0,2 В [1]). При контакте с морской водой на никеле наблюдается питтинго-вая коррозия.  [c.359]

При газолазерной резке металлов лазер непрерывного излучения на углекислом газе мощностью до 5 кВт позволяет в струе кислорода резать малоуглеродистые стали толщиной до 10 мм, легированные и коррозионно-стойкие стали — до 6 мм, никелевые сплавы — до 5 мм, титан—до 10 мм. Металлы, образующие тугоплавкие оксиды с малой вязкостью, газолазерной резкой разделяются плохо, так как удаление оксидов из зоны резхл в этом случае зтрудн но. К таким металлам относятся люминий и его сплавы, магний, латунь, хром и целый ряд других металлов, которые выгоднее резать плазменной резкой.  [c.128]



Смотреть страницы где упоминается термин Хром — кислород : [c.307]    [c.11]    [c.35]    [c.33]    [c.396]    [c.136]    [c.317]    [c.492]    [c.562]    [c.451]    [c.533]    [c.347]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Хром — кислород



ПОИСК



Диаграмма состояний железо—титан хром—кислород

Кислород

Система уран—хром—кислород

Система хром-кислород

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте