Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель под напряжением

Никель не подвержен коррозионному растрескиванию под напряжением (КРН), за исключением отмеченных выше случаев контакта с очень концентрированными щелочами или расплавами щелочей.  [c.360]

Коррозионная усталость 28, 155 сл. Коррозионное растрескивание под напряжением (КРН) 29 алюминиевых сплавов 353, 354 в грунтах 186, 187 влияние приложенного потенциала 144 железа 132—136 инициирование 142—145 критический потенциал 141 сл. латуней 334—338 магния 355 меди 327 никеля 360  [c.451]


Сопротивление ползучести никеля марки НП1 под напряжением 39 МПа при испытании на воздухе при 700—800 °С увеличивается по сравнению с испытанием в вакууме 1-10 Па 6=25 % на воздухе че-  [c.162]

Кинетика затухания экзоэлектронной эмиссии сплавов Ре—Ni приведена на рис. 32 и 33. Локальное нагружение алмазной пирамидой (пластический укол) или нагрев в напряженном состоянии сплавов Н15, Н25 и Н27 приводят к интенсивному выходу электронов с поверхности (рис. 32, 33 кривые 5—5). Сплавы с высоким содержанием никеля, не склонные к коррозии под напряжением (кривые 1, 2), имеют минимальные значения эмиссии.  [c.104]

Широко используются нержавеющие стали Fe - Сг - Ni без присадок и с присадками титана, меди, ниобия и молибдена. В зависимости от содержания хрома и никеля такие стали бывают аустенитными, аустенитно-мартенситными и аустенитно-фер-ритными. Они обладают высокими механическими свойствами и стойки к коррозии под напряжением.  [c.119]

Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва.  [c.28]

Содержание никеля в медноникелевых сплавах колеблется от 5 до 30%. Эти сплавы обладают хорошей коррозионной устойчивостью и широко применяются в кораблестроении и энергетической промышленности для изготовления конденсаторов, радиаторов, трубопроводов, опреснительных установок для получения питьевой воды из морской и др. Они нечувствительны к коррозии под напряжением в аммиачных растворах, за исключением сплавов 95—5 и 90—10, и устойчивы к действию разбавленных растворов щелочей.  [c.123]

В основном это самый устойчивый материал после серебра и платины. Окислители и восстановители (соединения серы) повышают скорость коррозии монель-металла, никеля и инконеля. Эти три металла склонны к коррозии под напряжением, особенно во влажном паре при аэрировании.  [c.485]

Коррозионная стойкость сплавов АК2, АК4 и АК4-1 заметно ниже стойкости других сплавов, содержащих медь, что обусловлено наличием в их составе железа и никеля в качестве легирующих элементов. После термической обработки по стандартным режимам эти сплавы склонны к коррозионному растрескиванию под напряжением. Поэтому в условиях эксплуатации эти сплавы должны быть надежно защищены.  [c.72]


О росте газовых и вакансионных пор на границах зерен в материалах под напряжением сообщается во многих работах. Однако для нержавеющих сталей и сплавов на основе никеля этот процесс происходит вне обычного температурного режима работы оболочек твэлов быстрых реакторов (больше 600° С).  [c.156]

Наиболее опасной формой коррозии является коррозия под напряжением. Она характеризуется первоначальным локальным разрушением защитной пленки и последующим очень быстрым его распространением под действием прилагаемых растягивающих напряжений вдоль границ зерен или транскристаллитного разрушения по дефектам упаковки или плоскостям скольжения. Склонность к коррозии под напряжением заметно увеличивается с твердостью стали и с увеличением содержания хрома в ферритной составляющей. Аустенитные стали типа 18-8 более чувствительны к такого рода коррозии, но с увеличением содержания никеля они становятся к ней менее склонными и при содержании - 60% Ni не корродируют вообще. Коррозионная среда может стать проводящей, если она содержит водород и кислород, но на практике она обычно является жидким раствором гидроокиси или хлористого натрия. Их высокие концентрации, температура и напряжения способствуют возникновению и быстрому распространению коррозии. Коррозия под напряжением может распространяться вдоль границ зерен или по зерну в зависимости от природы коррозионной среды и интенсивности напряжений, поэтому отдельные трещины могут носить как интер- так и транскристаллитный характер (см. рис. 15.18).  [c.35]

Некоторые сплавы меди проявляют большее сопротивление коррозии по сравнению с чистой медью благодаря коррозионно-стойким легирующим добавкам (никель, олово) или компонентам, облегчающим образование защитных пленок (алюминий). Латуни (сплавы меди с цинком) под действием некоторых коррозионных факторов могут подвергаться обесцинкованию. Кроме того, они проявляют повышенную склонность к коррозии под напряжением.  [c.105]

Рис. 2.3. Влияние содержания никеля в легированной стали (18 20% хрома) на чувствительность к коррозионному растрескиванию под напряжением в кипящем 42% иом Mg Рис. 2.3. Влияние содержания никеля в <a href="/info/294756">легированной стали</a> (18 20% хрома) на чувствительность к <a href="/info/1553">коррозионному растрескиванию</a> под напряжением в кипящем 42% иом Mg
Если причиной коррозии под напряжением является хлор-ион, может принести пользу применение аустенит-ных сталей с повышенным содержанием никеля. Если причина в накоплении гидроксил-иона, применение сплавов  [c.215]

Что касается железа, которое делает сплав более стойким к воздействию водорода, то можно полагать, что оно тоже влияет на поведение окиси. Никель же оказывает двойное действие на сплавы повышает их защитные свойства и в значительной степени способствует проникновению водорода (Это может происходить даже без поляризации, см. табл. 2). Общеизвестно, что добавление небольших количеств других металлов в окисел изменяет поведение окисла при повышенных температурах и под давлением. Поэтому можно предположить, что подобные добавки могут изменить поведение пленки окисла под напряжением, вызываемым увеличением объема, которым сопровождаются превращения металла в окисел и металла в гидрид.  [c.193]

При увеличении в нержавеющей стали содержания углерода и никеля до определенного предела склонность к коррозионному растрескиванию снижается. Хром при добавке его к сталям с высоким содержанием никеля улучшает стойкость стали против коррозии под напряжением [32].  [c.276]

Межкристаллитная коррозия распространяется по границам кристаллитов (зерен) металла. Этому виду коррозии подвержены некоторые сплавы (хромистые и хромоникелевые стали, сплавы на основе алюминия, никеля), у которых при определенных режимах термообработки, при старении или под напряжением изменяется химический состав на границе зерна по сравнению с составом в объеме зерна. Под действием коррозионной среды одна из структур, расположенная по границе зерна в виде непрерывной цепочки, растворяется при потенциалах активного состояния в этом случае анодная реакция локализуется на границе зерна, а само зерно металла (объем) находится в пассивном состоянии и разрушается мало.  [c.40]


Исследование сопротивления аустенитных нержавеющих сталей, а также сталей с промежуточными содержаниями хрома и никеля, показало, что повышение содержания никеля уменьшает чувствительность стали к коррозионному растрескиванию под напряжением при 160 МПа и  [c.119]

Недостаток аустенитных нержавеющих сталей — их склонность к коррозии под напряжением в морской воде. Однако стойкость их несколько повышается при увеличении содержания никеля. Например, сплав Инколой состава  [c.21]

Заметное влияние на магнитные свойства ферромагнетиков оказывают упругие изменения их размеров. При отрицательной магнито-стрикции в данном материале при действ1ии внешних растягивающих напряжений наблюдается уменьшение проницаемости. Так, для никеля под действием растягивающего  [c.271]

Стали и чугуны — наиболее широко используемые сплавы на железной основе. Содержание углерода в сталях не превышает 1,7 % в чугунах оно может доходить до 4 %. Таким образом, эти материалы в наибольшей степени подвержены коррозии под напряжением. Нелегированные железоуглеродистые сплавы используются в основном для изготовления строительных конструкций, а также различных аппаратов и емкостей. Для большей коррозионной стойкости эти сплавы легируют хромом, молибденом, кремнием, никелем, алюминием и другиАш элементами.  [c.38]

Химический состав никеля, скорости и типы коррозии, а также изменения механических свойств, вызванные коррозией, приведены в табл. 102—104 те же данные для Ni—Си-сплавоа — в табл. 105—107 для никелевых сплавов — в табл. 108—ПО. Данные о стойкости коррозии под напряжением — в табл. 111.  [c.279]

По данным К-Эделеану [111,92], наиболее агрессивными, с точки зрения коррозионного растрескивания, средами являются хлориды цинка, магния, натрия, калия, аммония и кобальта, а менее агрессивными — хлориды лития и никеля. Общая коррозия имеет место в хлоридах хрома и ртути. Наиболее безопасно в смысле общей коррозии и коррозии под напряжением хлористое олово. Добавление в раствор хлоридов 1% сульфата меди, 1% сульфата хрома, 5% ацетата натрия и 5% двух замещенного фосфата натрия не ускоряет процесса коррозионного растрескивания. Ингибирующие свойства имеют 5-процентный сульфат натрия и 5-процентный карбонат натрия. Слабое ускорение коррозионного растрескивания было отмечено при добавлении к хлоридам 1% бихромата калия. Такой окислитель, как хлористое железо (в количестве 5%), сильно ускоряет коррозионное растрескивание. Аналогичный эффект наблюдается при введении в раствор хлоридов 1% нитрита натрия, который также, как известно, является окислителем. При отсутствии в растворе хлоридов окислителей коррозионное растрескивание протекает крайне медленно или вообще не протекает [111,86]. X. Графен [111,83] указывает, что в растворе хлоридов, не содержащем кислорода, аустенитная нержавеющая сталь коррозионному растрескиванию не подвергается. При введении в раствор хлоридов кислорода сталь растрескивается тем быстрее, чем больше его концентрация в растворе (табл. 111-17).  [c.150]

Первые парогенераторы реактора PWR изготавливали из труб нержавеющей стали типа 18/8 и хотя этот материал работал удовлетворительно на некоторых станциях более трех лет, появление значительной коррозии под напряжением в процессе эксплуатации привело в большинстве случаев к замене их более коррозионно-стойкими материалами. Широкое распространение получили ннконель и монель-металл, которые обладают устойчивостью к коррозии под напряжением, а для некоторых будущих станций предлагается использовать сплав 800. Увеличение содержания никеля от 40% в инкаллое до 60% в инконеле улучшает сопротивляемость коррозии под напряжением и, хотя и в меньшей степени, питтингу.  [c.186]

Если информация о химических свойствах кластеров и изолированных наночастиц весьма обширна (см., например, монографию [23]), то применительно к консолидированным наноматериалам эти сведения весьма ограничены и исчерпываются главным образом информацией о взаимодействии наноструктурных пленок с газами и о коррозионной стойкости электроосажденного нанокристаллического никеля. Коррозионная стойкость последнего оказалась вполне удовлетворительной даже при таких жестких технологических испытаниях, как коррозия под напряжением при температуре 350 °С в 10%-м растворе NaOH в течение 3000 ч (характерно, что в аналогичных условиях традиционные никелевые сплавы оказались неконкурентоспособными [77]). Более того, в силу особенностей структуры наноматериалы могут быть лишены так называемой локализованной коррозии, поскольку в целом средняя локализация вредных примесей на многочисленных границах и тройных стыках может быть гораздо ниже, чем в обычных материалах.  [c.103]

Показано также, что на особенности коррозионного растрескивания под напряжением (переход от интеркристаллитного разрушения к траискристаллитному, зависимость сопротивления интеркристаллитному разрушению от состава) влияет энергия дефекта упаковки [14], увеличение ее должно приводить к уменьшению склонности к коррозионному растрескиванию. Например, повышение содержания никеля в нержавеющей хромистой (17% Сг) стали сопровождается увеличением энергии дефектов упаковки при этом возрастает время до наступления транскри-сталлитного разрушения.  [c.326]

Производились испытания [602 ] отрезков холоднотянутых труб из хромоникелевых сталей 18-8-Nb и 18-8-Мо в состоянии после холодной протяжки и отпуска при 538—871 " С с последующим охлаждением на воздухе и в воде. Было установлено, что отрезки труб из стали 18-8-Nb и 18-8-Мо после отпуска при 870 и 840° С и испытания в кипящем 42%-ном растворе Mg l совершенно не имели коррозионного растрескивания. Отрезки труб из этих сталей в холоднотянутом состоянии, имевшие остаточные напряжения 12 и 8 кС1мм , соответственно растрескивались через 6 и 7,5 кипячения. Из данных работ [422, 602, 607, 608] следует, что стабилизирующий отпуск при 800—900° С весьма целесообразен, так как он, снимая остаточные напряжения, устраняет склонность хромоникелевых сталей к коррозионному растрескиванию под напряжением. Для сталей 18-8-Мо наилучшие результаты получены при 840 С, для стали 18-8-Nb — при 870 С, а для стали 18-8-Ti — при 800—840° С [503, 602, 603, 611 ]. Для никеля и никелевых сплавов применяется отжиг при 600— 700° С.  [c.629]


Недостатком аустенитных нержавеющих сталей является их склонность к коррозии под напряжением в морской воде. В какой-то мере этого недостатка можно избежать увеличением содержания никеля. Примером тому служат сплавы 1псо1оу 800, содержащие 32% N1, и 1псо1оу 825 с 42% N1. Эффективны также добавки молибдена (например, молибденсодержащие аустенитные нержавеющие стали 316 и 317). Эти добавки значительно удорожают сталь, а полностью предотвратить коррозию под напряжением тем не менее не удается. Гораздо более действенным способом остается дозирование в морскую воду, использующуюся в системах охлаждения химических предприятий, ингибиторов коррозионного разрушения металла.  [c.28]

Рис. 35. Влияние содержания никеля в стали с 18 % Сг па сопротивление корро,зии под напряжением в 44 %-ном кипящем (153°С) растворе Mg b. Время до растрескивания Тдр. /СР — коррозионное растрескивание Рис. 35. Влияние содержания никеля в стали с 18 % Сг па сопротивление корро,зии под напряжением в 44 %-ном кипящем (153°С) растворе Mg b. Время до растрескивания Тдр. /СР — коррозионное растрескивание
Никель марок Н1 и НП2 обладает высокой коррозионной стойкостью в чистых растворах хлоридов и хлоратов. Однако в горячих растворах их смесей и особенно в жидкой смеси (шестиводного хлорида магния и хлората натрия) он подвергается весьма интенсивной язвенной коррозии. При испытании под напряжением в этих средах никель Н1 и НП2 подвергается коррозионному растрескиванию по границам зерен.  [c.325]

Высоколегированные стали. Коррозии под напряжением подвержены аустенитные стали, например хромоникелевые стали 18-8 с добавкой Мо и без нее, стабилизированные и нестабилизированные низко-углеродистые сорта, аустенитные хромомарганцовоникелевые стали и стали с более высоким содержанием никеля (AISI309 и 310). Нержавеющая сталь с дисперсионным твердением более подвержена коррозии, чем аустенитная сталь. Ферритные хромистые стали с 12 17 и 25% хрома менее склонны к коррозии. Аустенитные стали особенно нестойки, если в них почти отсутствуют ферритные составляющие [121]. Коррозия здесь преимущественно вну-трикристаллитная. Она бывает и межкристаллитной — у сталей в сенсибилизированном состоянии или при недостаточной стабилизации.  [c.44]

Введение в высокохромистые (ферритные) стали никеля, азота, хрома способствует расширению области у-фазы. В результате при определенном соотношении содержания хрома и указанных элементов образуется смешанная аустенито-ферритная структура, обладающая рядом преимуществ по сравнению с-ферритной и аустенитной. Это обусловило более широкое применение этих сталей (см. табл. 1). Так, наряду с повышенной общей коррозионной стойкостью, стали почти не склонны к межкристаллитной коррозии и стойки против коррозии под напряжением. Относительное удлинение и ударная вязкость этих сталей, особенно азотосодержащих (Х28АН и др.), заметно выше, чем ферритных. Присутствие азота в стали приводит к измельчению зерна в исходном состоянии и замедлению скорости роста зерен при нагревании. Стали обладают также хорошими литейными свойствами, поэтому их широко применяют для изготовления отливок. Однако эти стали труднее обрабатывать давлением, чем, например, аустенитные.  [c.20]

Дефектные места швов (места с порами и трещинами) следует вырубать и заваривать вновь. В тех случаях, когда конструкция должна иметь гладкую поверхность, после газовой или дуговой сварки шов проковывают или прокатывают. При этом прочность его повышается за счет измельчения структуры. Иногда после проковкп следует отжиг. После такой обработки прочность швов равна прочности основного металла. Прп сварке никеля и его сплавов необходимо обращать внимание на то, чтобы в изделип возникали минимальные сварочные напряжения для предотвращения коррозии под напряжением. Это требование трудно выполнимо при газовой сварке, когда возникает также опасность науглероживания металла шва.  [c.184]

В работе Дж. Лайла [4] приведены свойства двух экспериментальных сплавов (М916 и М917), содержащих большие добавки железа и никеля. Показано, что порошковые сплавы прочнее, несколько менее пластичнее, но не более чувствительны к коррозии под напряжением, чем стандартные сплавы того же состава.  [c.277]


Смотреть страницы где упоминается термин Никель под напряжением : [c.309]    [c.370]    [c.106]    [c.106]    [c.107]    [c.127]    [c.343]    [c.183]    [c.326]    [c.354]    [c.102]    [c.151]    [c.68]    [c.283]    [c.287]    [c.828]    [c.830]   
Морская коррозия (1983) -- [ c.302 ]



ПОИСК



Коррозионное растрескивание под напряжением (КРН) никеля

Коррозия под напряжением никеля

Никель



© 2025 Mash-xxl.info Реклама на сайте