Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схемы включения двигателей постоянного тока

Фиг. 1. Схема включения двигателя постоянного тока параллельного возбуждения. Фиг. 1. Схема включения двигателя постоянного тока параллельного возбуждения.

Рис. 66. Схема включения двигателя постоянного тока с независимым возбуждением Рис. 66. Схема включения двигателя постоянного тока с независимым возбуждением
СХЕМЫ ВКЛЮЧЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА  [c.177]

Рис. 2.2.7. Схемы включения двигателей постоянного тока а — независимого возбуждения б — последовательного возбуждения в — смешанного возбуждения Рис. 2.2.7. Схемы включения двигателей постоянного тока а — независимого возбуждения б — последовательного возбуждения в — смешанного возбуждения
Рис, 71. Типовая схема включения двигателя постоянного тока.  [c.136]

Рис. 66. Включение двигателя постоянного тока по схеме независимого возбуждения Рис. 66. Включение <a href="/info/120512">двигателя постоянного тока</a> по <a href="/info/514712">схеме независимого</a> возбуждения
Рассмотрим схему управления двигателем постоянного тока с контроллером КП-2026, приведенную на рис. 6.18. Контроллер имеет дугогасящую катушку МЗ. При установке барабана контроллера в первое рабочее положение включается контактор и отключается после перевода барабана в нулевое положение. Контактор отключается также при размыкании одного из конечных выключателей Ql и Q2. Проследим цепь питания катушки контактора один конец ее включен в главную цепь (+Л1), а второй конец присоединен к пальцу 4 контроллера и через сегменты контроллера 3 или 4 (в зависимости от направления) и один из конечных выключателей соединен со вторым проводом главной цепи (—Л2).  [c.276]

Одновременно с включением электродвигателя включается и параллельный тормозной электромагнит У В. Схема управления двигателями постоянного тока с электрическим торможением рассмотрена ниже.  [c.277]


Измерительным прибором служит мост типа ЭТП-209 со сдвоенным реохордом для включения в систему слежения обратной связи. Реохорд задачи программы прибора РУ-5-01 и реохорд обратной связи измерительного прибора ЭТП-209 образуют мостовую схему. При наличии разбаланса в мостовой схеме сигнал поступает в усилительную аппаратуру и на исполнительные органы до устранения в системе разбаланса. Усилительной частью схемы служат ламповый и электромашинный усилитель типа ЭМУ-12А. Электромашин-ный усилитель работает в паре с двигателем постоянного тока серии П-12, нагружающим образец через соответствующую систему механического редуцирования.  [c.64]

С высоким пусковым моментом, большим числом включении в час и регулированием скорости Двигатели постоянного тока последовательного или смешанного возбуждения, иногда с искусственными схемами соединения обмоток Механизмы подъема и передвижения кранов большой производительности и точности, вспомогательные металлургические механизмы, электрическая тяга  [c.239]

Двигатели постоянного тока параллельного возбуждения 501, 513 — Пусковая диаграмма 503 — Схема включения 501 — Торможение — Схема 502 —Характеристики 502, 503, 504, 505, 513  [c.708]

Схема электропривода напорного механизма. Этот механизм приводится в действие двигателем постоянного тока ДН, включенным последовательно в цепь якоря генератора напора ГН. Электриче-  [c.272]

Схема электропривода поворотного механизма. Для приведения в действие механизма поворота на экскаваторе ЭКГ-4,6 применяются два двигателя постоянного тока 1ДВ и 2ДВ, которые получают питание от генератора поворота ГВ. Электрическая схема управления этим приводом также не отличается от рассмотренной выше схемы привода подъема, за исключением того, что здесь отсутствует узел ослабления поля двигателя. Кроме того, в рассматриваемой схеме предусматривается реле контроля напряжения РП, включенное на падение напряжения в главной цепи (точки 210—240). Это реле включает узел гашения ноля генератора (н. о. контакты 252).  [c.273]

Схема электропривода механизма подъема ковша. Подъемная лебедка приводится в действие двигателем постоянного тока ДП (см. рис. 177), включенным последовательно в цепь трехобмоточного генератора подъема ГП.  [c.279]

В электроприводе лифтов наиболее часто используют схему включения двигателя с независимым возбуждением (рис. 66). Напряжение и с от источника постоянного тока подводится к зажимам якорной обмотки и Я2, а напряжение и в — к шунтовой обмотке возбуждения двигателя ОВд на зажимы Ш1 и Ш2.  [c.106]

В электрических приводах для бесступенчатого изменения скорости вращения шпинделя используется свойство двигателей постоянного тока плавно изменять число оборотов ротора при определенной схеме включения. Однако отсутствие в цехе источников постоянного тока весьма затрудняет использование этого метода на практике. Такая схема регулирования не получила заметного применения и встречается лишь в нескольких моделях токарных автоматов и редко в других моделях станков.  [c.24]

Основными обмотками статора двигателя постоянного тока являются шунтовая и сериесная обмотки возбуждения, использующиеся для создания различных схем включения двигателей.  [c.125]

Математические модели генераторов и двигателей постоянного тока общеизвестны. Наличие нелинейной характеристики намагничивания и обмотки самовозбуждения генератора усложняет обычную структуру модели генератора. Математическая модель рассматриваемого генератора получается на основе электромагнитных контуров схемы включения.  [c.412]

Общий метод расчета механической характеристики двигателей постоянного тока в рассматриваемой схеме (рис. 7-1) включения заключается в нахождении за-, висимостей / =/ (/,1.) и /ц, =/(/я ) и последующем переходе к зависимости n, = f(M,).  [c.137]


Тяговые двигатели электровозов переменного тока, которые часто называют двигателями пульсирующего тока, по своей конструкции и схеме включения несколько отличны от обычных двигателей постоянного тока. Для снижения пульсационных потерь в магнитной системе машины обмотки возбуждения постоянно шунтированы активным сопротивлением как показано на рис. 39 и 41.  [c.48]

Для управления двигателями постоянного тока, так же как и переменного, можно применять магнитные контроллеры. Схема управления с магнитным контроллером типа П, изображенная на рис. 6.23, предназначена для механизмов передвижения. Этот контроллер имеет симметричную схему включения, в которой предусмотрены торможение противовключением и регулирование частоты вращения пусковыми резисторами.  [c.280]

В приведенной на рис. 103, б схеме регулятора органом сравнения служит механический дифференциал Д. Сравнение выходного сигнала с МЭП и заданного осуществляется следующим образом. Угловая частота выходного вала 1 дифференциала Др, вращательное движение которого преобразуется винтовой парой 2 в поступательное перемещение ЭИ, зависит от разности угловых частот вращения входных валов дифференциала. Один из этих валов вращается асинхронным двигателем Д с неизменной угловой частотой Шз, а другой (4) — с частотой С04 двигателем постоянного тока, якорь Я которого включен на балластный резистор Я в цепи ГИ— МЭП. Угловая частота выходного вала 1 дифференциала Др  [c.178]

Обычно для изменения скорости растяжения образца применяются схемы регулирования числа оборотов электродвигателя постоянного тока с помощью включения в обмотку якоря или обмотку возбуждения управляющего реостата. Включение реостата требует значительного дополнительного расхода электроэнергии в цепи управления. Кроме того, сопротивление реостата ограничивает пределы изменения частоты вращения электродвигателя в области низких значений скорости растяжения, поэтому при такой схеме регулирования приходится использовать электродвигатель с заведомо увеличенной в несколько раз мощностью с тем, чтобы при минимальной частоте вращения получить требуемое значение крутящего момента на валу двигателя и, таким образом, усилие растяжения образца.  [c.84]

Выбрав тип и габарит двигателя, намечают по каталогу его механические характеристики— пусковые, тормозные, регулировочные, рабочие, соответственно фиксируя число ступеней пуска, торможения, регулирования скорости. Попутно решают вопрос о роде управления, которое может быть автоматическим, полуавтоматическим, ручным. Последнее в современной практике по условиям производительности, качества продукции, надёжности, расхода энергии и т. п. почти не применяется. Выбирая характеристики двигателя, тем самым намечают схему включения главных цепей двигателя якоря и обмотки возбуждения в машинах постоянного тока, статора и ротора — в асинхронных машинах.  [c.3]

Барабанные контроллеры типа КПС и кулачковые контроллеры типа ПКС постоянного тока, предназначающиеся исключительно для управления сериесными электродвигателями механизмов подъёма—спуска, позволяют включать двигатели на положе-. ниях подъёма по нормальной схеме реостатного пуска, а на положениях спуска — по шунтовой схеме, осуществляя тормозной или силовой моменты в зависимости от величины спускаемого груза. В них предусматривается конечное включение вспомогательного тока и допускается присоединение шунтового или сериесного тормозного магнита.  [c.851]

Для. быстрой остановки привода может применяться электрическое торможение динамическое или противовключением. На фиг. 3 изображена схема динамического торможения короткозамкнутого двигателя. Пуск двигателя производится обычно кнопкой. При нажатии кнопки Стоп , которая имеет два контакта, двигатель отключается от сети линейным контактором Л, после чего включается тормозной контактор Т. Статор подключается к постоянному току от выпрямителя ТВ. Торможение длится в течение выдержки времени реле, пристроенного к контактору. Контакторы Л ж Т сблокированы НЗ блокконтактами. Одновременное включение обоих контакторов могло бы привести к выходу из строя выпрямителя.  [c.543]

Вращение от электродвигателя постоянного тока 12 через клиноременную передачу передается гидронасосу 11. Скорость перемещения датчика регулируется изменением подачи масла в гидросистему через число оборотов электродвигателя и эксцентриситет гидронасоса. Гидронасос имеет реверс, что позволяет менять направление перемещения. Масляная магистраль от насоса через кран переключения рода работы 13 подводится к золотнику управления двигателями 8. Золотник перемещается электромагнитами 1 я 2, снабженными микровыключателями 9. Пуск двигателя (схема пуска на рисунке не показана) сблокирован с включением электромагнита 1. При этом золотник 8 перемещается в верхнее положение.  [c.244]

С высоким пусковым моментом, большим числом включений в час и регулироианием сио- рости Двигатели постоянного тока последовЭ тельного или смешан кого возбуждения, иногда с искусственными схемами соединения обмоток, а также системы с регулируемым напряжением 1ЮСтоя иного тока Механизмы подъема и передвижения кранов S большой производитель- ности и точности, вело- 1 могательные металлур- i гические механизмы, 1 электрическая тяга  [c.126]

Сравнение видов электрического торможения. Рекуперативное торможение можно применять в шунтовых двигателях постоянного тока с регулированием скорости током возбуждения и в короткозамкнутых асинхронных Двигателях с переключением полюсов. Выбор между противовключеняем и динамическим торможением зависит от требуемой быстроты торможения и точности остановки при одинаковых исходных токах в якоре торможение противовключением более эффективно, так как тормозной момент при противо-включении меняется мало, а при динамическом торможении спадает до нуля. Динамическое торможение практически считается наиболее точным. Для реверсивных приводов чаще применяют противовключение, для нереверсивных— динамическое, так как схема последнего проще.  [c.8]


Контроллерные диаграммы. Каждая автоматическая схема имеет несколько характерных положений замыкания её элементов. Возьмём для примера нереверсивный сериес-ный двигатель постоянного тока, предназначенный для пуска в одну сторону по трём механическим характеристикам. Схема будет иметь четыре характерных положения включения её автоматических аппаратов а) покой б, в, г) работа на первой, второй и третьей характеристиках. Для уяснения основных условий работы схемы автоматизированного электропривода служит контроллерная диаграмма, Она показывает число типичных положений схемы, число включённых в неё главных аппаратов и какие аппараты включены при каждом положении. Для иллюстрации на фиг. 86 показана схема главной цепи реверсивного сериесного двигателя с двумя парами реверсирующих контакторов, из ко-  [c.62]

Рис. 14.129. Схема автоматического регулирования скорости вращения барабана многоиратного волочилвнопо стана с приводом от двигателей постоянного тока. Двигатели 9 (рис. а) вращают барабаны 4. Проволока 1, огибая барабан, направляется вокруг натяжного ролика 7, затем вокруг холостого ролика 8 и далее через фильер 3 к следующему барабану. Чтобы исключить образование петель и проскальзывание проволоки, натяжной ролик 7 (рис. б), посаженный на ось рычага 15, связанного с зубчатым сектором 12, при повороте смещает ползунок реостата 5, включенного в цепь обмотки возбуждения предшествующего двигателя. Величина натяжения проволоки механически регулируется связанной с роликом 7 пружиной 14. Рычаги 15 и 13 должны располагаться так, чтобы противонатяжение составляло 10—30% от усилия волочения с отклонением не более 10% от принятой величины. Рис. 14.129. <a href="/info/54222">Схема автоматического регулирования скорости</a> вращения барабана многоиратного волочилвнопо стана с приводом от <a href="/info/120512">двигателей постоянного тока</a>. Двигатели 9 (рис. а) вращают барабаны 4. Проволока 1, огибая барабан, направляется вокруг <a href="/info/29856">натяжного ролика</a> 7, затем вокруг холостого ролика 8 и далее через фильер 3 к следующему барабану. Чтобы исключить образование петель и проскальзывание проволоки, <a href="/info/29856">натяжной ролик</a> 7 (рис. б), посаженный на ось рычага 15, связанного с <a href="/info/12274">зубчатым сектором</a> 12, при повороте смещает ползунок реостата 5, включенного в цепь <a href="/info/205331">обмотки возбуждения</a> предшествующего двигателя. Величина натяжения проволоки механически регулируется связанной с роликом 7 пружиной 14. Рычаги 15 и 13 должны располагаться так, чтобы противонатяжение составляло 10—30% от <a href="/info/99031">усилия волочения</a> с отклонением не более 10% от принятой величины.
При пормалыюй работе привод по схеме IV приводится в действие двигателем постоянного тока, который питается от агрегата Г—Д при этом муфта, расположенная между редуктором и асинхронным двигателем, выключена. В случае повреждения приводного электродвигателя постоянного тока или агрегата Г—Д, привод может работать от асинхронного двигателя, питающегося непосредственно от сети. Муфта, соединяющая асинхронный двигатель, включена. При отсутствии электроэнергии во внешней сети из-за ее повреждения генератор постоянного тока агрегата Г—Д может работать от дизеля, посредством включения фрикционной муфты, соединяющей дизель с генератором асинхронный двигатель при этом отключается. И, наконец, если вследствие неисправности электромашин или повреждения в цепи управления, ни один из перечисленных способов не может быть осуществлен, привод может быть приведен в действие непосредственно от дизеля.  [c.566]

Рнс. 16. Прннципиаль пая схема включения выпрямителя в цепь тягового двигателя постоянного тока  [c.16]

На рис. 14, б представлена схема ПМУ мощностью до 0,5 кет. Схема состоит из питающего однофазного трансформатора Тр с двумя вторичными обмотками 2иЗ, двигателя постоянного тока Д и магнитного усилителя. В магнитный усилитель входят две обмотки управления ОУ и ОУа и две рабочие обмотки ОР и ОР , включенные в плечи выпрямительного моста. Обмотка трансформатора 2 питает цепь якоря двигателя Д, а обмотка 3 питает обмотку возбуждения ОВД двигателя. Выпрямление тока в каждой цепи осуществляется дву хполу пер йодным выпрямителем В1— В4 — в цепи якоря и 1В—4В — в цепи возбуждения.  [c.41]

На фиг. 496 показана одна из схем включения двух вентилей, через которые от трансформатора однофазного тока производится питание электроэнергией двигателя постоянного тока. В моменты, когда на вторичной обмотке трансформатора возникает напряжение, которое может вызвать ток от точки а к точке х, фактически ток возникает только в цепи полуобмотка трансформатора о—х,  [c.404]

Для автоматического пуска асинхронных двигателей с фазовым ротором или двигателей постоянного тока применяются магнитные контроллеры (контакторные панели), представляющие собой комплект контакторов и реле, соединеннных по определенной схеме. Все сказанное о магнитном пускателе полностью осуществихмо в случае управления электродвигателями с помощью магнитных контроллеров. При напряженном режиме работы, характеризующемся большим числом включений в час, и при значительной мощности двигателя, когда управление с помощью обычного (ручного) контроллера становится затруднительным, применяют магнитные контроллеры. При весьма тяжелых режимах работы кранов, при питании кранов переменным током применя-  [c.94]

Электроконтактные регуляторы применяются в двигателях малой мощности. На рис. 31.13 показан электроконтактный регулятор вибрационного действия. В момент включения двигателя ток проходит через замкнутые контакты 3 регу-лятора и подается в цепь питания двигателя. При увеличении частоты вращения сила инерции груза 2 преодолевает силы сопротивления пружин / и 4, отклоняет груз 2 и размыкает контакты 3. Частота вращения якоря уменьшается, вследствие чего контакты вновь замыкаются, и процесс повторяется. Непрерывное замыкание и размыкание контактов дают возможность авто.матически поддерживать угловую скорость Ыср, близкую к постоянной. Изменение задаваемой угловой скорости в этих регуляторах осуществляется подбором элементов электрической схемы.  [c.400]

Барабанные контроллеры типа КП и кулачковые контроллеры типа ПК для постоянного тока имеют симметричную схему включения, допускающую присоединение шунто-вого или сериесного тормозного электромагнита, и снабжены дополнительными пальцами для максимально-нулевой и конечной защиты вспомогательного тока. Применяемые преимущественно для управления сериесными двигателями в механизмах передвижения и поворота (вращения поворотной части грузоподъёмных машин), они используются также для управления шунтовыми и компаундными двигателями для механизмов подъёма груза они применяться не могут, за исключением случаев привода механизмов шунтовыми электродвигателями.  [c.851]

На автомобилях с генераторами постоянного тока присоединение на массу обмотки дополнительного реле осуществляется через обмотку якоря генератора, что обеспечивает электрическую блокировку стартера, предупреждая ошибочное включение последнего на работающий двигатель (во время работы двигателя оба конца обмотки дополнительного реле находятся под одним и тем же напряжением). При этой схеме отказ в работе дополнительногог реле может быть вызван нарушением контакта в цепи якоря генератора, например вследствие заедания щетки в щеткодержателе. Проверка осуществляется непосредственным соединением вывода обмотки дополнительного реле с массой, минуя генератор.  [c.46]


Смотреть страницы где упоминается термин Схемы включения двигателей постоянного тока : [c.326]    [c.121]    [c.126]    [c.274]    [c.324]    [c.150]    [c.268]    [c.21]    [c.70]   
Смотреть главы в:

Справочник конструктора  -> Схемы включения двигателей постоянного тока



ПОИСК



Включения

Двигатели Схемы

Двигатели постоянного тока параллельного возбуждения 501, 513 — Пусковая диаграмма 503 — Схема включения 501 — Торможение — Схема

Двигатель постоянного тока

Схемы включени

Схемы включения

Схемы двигателей постоянного ток

Схемы двигателей постоянного тока

Схемы постоянного тока

для постоянного тока



© 2025 Mash-xxl.info Реклама на сайте