Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и структуры сталей при отпуске

Свойства и структуры сталей при отпуске  [c.238]

Объяснить, почему свойства и структура стали зависят не только от температуры отпуска, но также и от выдержки при отпуске, если выдержка увеличивается с 20 до 60 мин.  [c.281]

Высокий отпуск проводится при 550-650 °С. В результате твердость и прочность снижаются значительно, но сильно возрастают вязкость и пластичность и получается оптимальное для конструкционных сталей сочетание механических свойств. Структура стали — сорбит отпуска с зернистым строением цементита. Применяется для деталей, подвергающихся действию высоких нагрузок. Термическая обработка, состоящая из закалки и высокого отпуска, называется улучшением. Она является основным видом обработки конструкционных сталей.  [c.126]


Отпуск стали оказывает существенное влияние на ее механические и служебные свойства. При низких температурах отпуска (до 250 °С) уменьшается склонность стали к хрупкому разрушению. Прочность и вязкость стали при низкотемпературном отпуске (до 250 °С) несколько возрастает из-за уменьшения внутренних напряжений и изменений структуры стали.  [c.442]

В большинстве случаев при закалке желательно получить структуру наивысшей твердости, т.е. мартенсит, при последующем отпуске которого можно понизить твердость и повысить пластичность стали. При равной твердости структуры, полученные при отпуске мартенсита, имеют лучшие механические свойства, чем структуры, полученные непосредственно в результате распада аустенита, за исключением нижнего бейнита.  [c.179]

Корреляция между характеристиками механических свойств и тонкой кристаллической структурой при отпуске закаленных и холоднодеформированных сталей установлена К. Ф. Стародубовым [254], а между твердостью и величиной блоков при отпуске закаленных углеродистых и низколегированных конструкционных сталей — Л. И. Миркиным [524]. Таким образом, можно сделать вывод, что связь между ударной вязкостью и величиной микроискажений кристаллической решетки матрицы, а также величиной областей когерентного рассеяния является закономерной и проявляется во многих случаях. Следовательно, рентгеновским методом можно оценить запас вязкости после различных обработок. При этом необходимо учитывать, что рентгеновский метод дает возможность определить лишь среднюю величину микроискажений матрицы. Зависимость свойств углеродистых сталей от температуры деформации аналогична по характеру зависимости свойств от температуры испытании. Поэтому установленная для случая теплой прокатки взаимосвязь между характеристиками механичес-  [c.280]

Итак, при низком отпуске закаленная на мартенсит сталь не претерпевает значительных изменений в свойствах и структуре.  [c.239]

Развитие металлургии во второй половине XIX в. неразрывно связано с именем выдающегося русского ученого Д. К. Чернова. Он является создателем учения о металлографии и термической обработке. В 1868 г. Д. К. Чернов установил, что во время нагревания и охлаждения стали при определенных температурах (точки а и б) происходят внутренние превращения, приводящие к изменению структуры и свойств стали. Д. К. Чернов является создателем теории аллотропических превращений в железе и стали, создателем современного представления о теории закалки и отпуска стали, теории кристаллизации стали.  [c.8]


Сопоставление механических свойств и структуры сварных соединений, подвергаемых отпуску при различных температурах, со свойствами литой стали (см. табл. 40) показывает, что после отпуска 700, 720 и 740°С механические свойства сварных соединений практически соответствуют механическим свойствам литой стали. Отпуск при температуре 740°С позволяет получить одновременно и наиболее высокие пластические свойства сварных соединении, что является особенно важным для обеспечения надежности работы сварных конструкций в условиях приложения длительной нагрузки при высоких температурах.  [c.112]

Отпуск — это процесс термической обработки, связанный с изменением строения и свойств закаленной стали при нагреве ниже критических температур. При отпуске происходит распад мартенсита (пересыщенного твердого раствора С в а-Ре после закалки) и остаточного аустенита. Вследствие перехода к более устойчивому состоянию образуются структуры продуктов распада УИ и Л, смеси а-Ре и карбидов. При этом повышаются пластичность и вязкость, снижается твердость и уменьшаются остаточные напряжения в стали.  [c.107]

После закалки не достигается максимальная твердость сталей (ИКС 62), т. к. в структуре, кроме мартенсита и первичных карбидов, содержится 30. 40% остаточного аустенита (Мк ниже 0 С). Он снижает механические свойства стали, ухудшает шлифуемость и стабильность размеров инструмента Остаточный аустенит превращают в мартенсит при отпуске или обработке холодом.  [c.110]

Оптимальная структура стали (мелкозернистый сорбит), которая достигается после термической обработки, заключающейся в нормализации с высоким отпуском или закалке с высоким отпуском. Хорошие результаты дают также изотермическая и двойная закалки, повышающие стойкость стали к растрескиванию в сероводородсодержащей среде при одновременном сохранении высоких механических свойств. Положительное влияние на повышение стойкости стали к сульфидному растрескиванию оказывают многократный отпуск, способствующий  [c.22]

Показано, что структура стали несколько измельчается, количество неметаллических включений почти не изменяется, а механические свойства (после отжига и закалки при 860° С с последующим отпуском при 650° С) повышаются  [c.64]

Сталь наилучшей структуры, именуется мартенситом. Она представляет собой перенасыщенный раствор углерода в а-железе. При быстром охлаждении и закалке стали с 0,8 процента углерода происходит перекристаллизация. Оставшиеся атомы углерода мешают перестройке, в результате чего решетка у-железа искажается. Свойства сталей зависят от режима образования структуры мартенсита и последующего его распада при отпуске, т. е. при нагреве, когда процесс диффузии позволяет атомам перегруппироваться и образовать (более постоянную, устойчивую структуру с оптимальными твердостью и пластичностью.  [c.38]

Стали аустенитного класса на марганцовистой основе склонны к образованию трещин при нагревании и давлении, отличаются плохой свариваемостью, при медленном охлаждении и отпуске при 300—400 °С структура стали переходит в мартенсит. Однако эта сталь отличается высокой износостойкостью. Твердость металла на поверхностях трения в местах изнашивания повышается в процессе работы звеньев и поддерживается в пределах от 200 до 500 НВ при высокой пластичности, что близко к твердости закаленной стали 45, пластичность которой значительно ниже. Такое свойство аустенитной стали способствует повышению износостойкости в абразивной среде при ударных нагрузках.  [c.379]

Структура и свойства неэвтектоидных сталей при отпуске изменяются примерно аналогично эвтектоидным, но, конечно, с учетом того влияния, какое оказывает углерод на свойства и структуру сталей при закалке.  [c.243]

Отпуск стали - необходимая и заключительная операция термической обработки, в результате которой формируются окончательная структура и свойства стали. При отпуске снижаются и устраняются внутренние закалочные напряжения, повышаются вязкость и пластичность, несколько понижается твердость. В зависимости от температуры наг рева различают отпуск низкотемпературный, среднетемпературный и высокотемпературный. Для деталей узлов трения применяют низкотемпературный отпуск с нагревом до 150-200°С. При этом нескол1>ко снижаются нну1ренние напряжения, но твердость остается высокой (58-62 HR ). Структура стали после отпуска состоит из мартенсита отпуска. Этот вид отпуска применяется также для режущих и измерительных инструментов и для изделий, подвергающихся цементации и нитроцементации.  [c.237]


Стали мартенситного класса обладают более высокой жаропрочностью и повышенным сопротивлением окислению (содержание Сг до 12 %), чем перлитные [25]. Из-за возможного образования хрупких мартенситных структур после сварки возникает необходимость проведения высокотемпературного отпуска (650—700 °С). Такая термическая обработка также снимает напряжения, возникающие при мартенситном превращении. Механические свойства и назначение сталей мартеноитного класса приведены в табл. 8.19—8.21 (ГОСТ 5632-72, ГОСТ 5949-75).  [c.326]

Обычно процессы сфероидизации и коалесценции цементитных частиц (отжиг на зернистый перлит, высокотемпературный отпуск после закалки) приводят к росту пластических свойств. Поэтому снижение пластичности при отпуске холоднодеформированной стали обусловлено процессами, происходящими в матрице. Эксперименты по ускоренному охлаждению могут служить некоторым подтверждением этой точки зрения (см. рис. 85). Быстрое охлаждение стали после отпуска дополнительно снижает пластичность. Такое снижение пластических свойств стали нельзя объяснить ни повышенным содержанием углерода в твердом растворе (нормальных позициях внедрения), ни увеличением напряжений, так как охлаждение в воде с 600—650° С практически не оказывает влияния на пластичность. Процессы же сфероидизации и коалесценции цементитных частиц значительно облегчают адсорбцию атомов углерода на вновь образованных границах. Такое объяснение хорошо согласуется с такими экспериментальными факторами, как увеличение эффекта снижения пластичности с повышением содержания углерода в стали, степени деформации и увеличением дисперсности цементитных пластин. В сталях с грубопластинчатой структурой эффект снижения пластичности проявляется слабее (ср. рис. 55 и 59), а в сталях с низким со)1.ержанием углерода или высокоуглеродистых сталях с глобулярным цементитом, который не претерпевает изменений при деформации, а также при последующем отпуске до 600—650° С, эффект снижения пластичности очень мал или вообще не наблюдается (см., например, рис. 56).  [c.211]

После термической обработки повышаются полезные свойства железоуглеродистых сплавов. Закаленный и низкоотпущен-ный сплав имеет мелкозернистую структуру и состоит из большего числа мелких блоков. На ранних стадиях отпуска выделения новой фазы (карбидов) крайне дисперсны и присутствуют в большом количестве. В углеродистой стали при отпуске 200—300° С выделяются кристаллики карбида в виде пластинок толщиной 7 10" мкм, а блоки мартенсита имеют размеры около  [c.37]

При сварке термически упрочненных сталей на участках рекристаллизации и старения может произойти отпуск металла с образованием структуры сорбита OTny ita и понижением прочностных свойств металла. Технология изготовления сварных конструкций из низколегированных сталей должна предусматривать минимальную возможность появления в зоне термического влияния закалочных структур, способных привести к холодным трещинам, особенно при сварке металла больших трещин. При сварке термически уирочпеп[п,]х сталей следует принимать меры, предупреждающие разупрочнение стали на участке отпуска.  [c.214]

Переходим к рассмотрению влияния прокаливаемости на свойства стали. При сквозной закалке свойства по сечению закаленной стали однородны. При несквозной закалке свойства закаленной стали изменяются от поверхности к центру так же, как изменялись бы свойства у серии тонких образцов, которые получили бы при закалке разную скорость охлаждения. Представляет особый интерес, чем будут отличаться по свойствам стали с различной прокаливаемостью, если последующим отпуском выравнить твердость по сечению. Следует вспомнить, в чем состоит различие свойств продуктов закалки и продуктов закалки и отпуска, т. е. в чем различие пластинчатых и зернистых структур.  [c.298]

Отжиг нормализационный нормализация). Нормализация заключается в нагреве доэвтектондной стали до температуры, превышающей точку Лсз на 50 С, заэвтектоидной выше Аст также на 50 С, непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе (см. рис. 123, б). Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье или прокатке, ковке или штамповке. Нормализацию широко применяют для улучшения свойств стальных отливок вместо закалки и отпуска,  [c.198]

Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в больщинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости пе восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали.  [c.16]

Изучение изменений в дислокационной структуре металла отливок из стали 15Х1М1ФЛ показывает, что в эксплуатации протекают разупрочняющие процессы, влияющие на жаропрочные свойства стали. После длительной (более 10 ч) эксплуатации при температуре 540—550 °С в структуре стали наблюдают- ся как зародыщи рекристаллизации, так и свободные от дислокаций рекристаллизованные объемы. Идет процесс роста карбидных астиц с одновременным уменьщением плотности дисперсных карбидов. За счет этих процессов в структуре стали происходят заметные изменения. Рекристаллизация приводит к обособлению феррита в зернах игольчатого сорбита отпуска. Происходит также преобразование фрагментированного сорбита отпуска в бесструктурный. Обособление феррита приводит к возрастанию неоднородности структуры и как следствие — к  [c.38]


Наиболее существенный фактор, влияющий на свойства отпущенной стали — температура отпуска, хотя весьма важно и состояние исходной структуры. Мелкоигольчатая ст руктура достигается лишь при исходной мелкозернистой аустенитной структуре.  [c.109]

В результате отпуска сталей Н16 и Н25 при 43Q° G, I ч происходит значительное уменьшение ширины линий интерференции. Разделение эффекта уширения интерференционных линий за счет наличия микроискажений и малости областей когерентного рассеяния позволило установить, что резкое уменьшение ширины линий, наблюдаемое при отпуске сталей Н1б и Н25 в основном связано с уменьшением величины неоднородных микроискажений. Так, в сплаве Н25 отпуск при 430° G приводит к снижению Дй/о с 2,8 до 0,3 х 10 [68 J. Размер же областей когег рентного рассеяния и твердость остаются практически неизменными (рис. 50), а предел текучести несколько- возрастает. Аналогичная закономерность в характере изменения характеристик тонкой структуры и механических свойств при отпуске наблюдается  [c.119]

Сталь среднеу г лероди ста я и с повышенным содержанием углерод а характеризуется более высокой прочностью, относительно меньшей вязкостью, хорошей свариваемостью при 0,3—0,4 /о С, умеренной при 0,4—0,57о С и низкой при содержании выше 0,5 /о С. Сталь подвергается обычно улучшению, т. е. закалке с высоким отпуском. Этим видом термообработки достигается получение мелкозернистой сорбитной структуры и оптимальных для данного назначения стали механических свойств. Температура закалки определяется главным образом положением верхней критической точки стали, температура отпуска — заданной твёрдостью. Марганцовистые марки, этой стали по сравнению с соответствующими углеродистыми характеризуются повышенной прочностью и износостойкостью при несколько пониженной  [c.372]

Превращения при закалке и отпуске чугуна в основном аналогичны со сталью. Закалка преследует цель повышения твёрдости, сопротивления истиранию и улучшения механических свойств. В отличие от стали нагрев и выдержка чугуна до температур, лежащих ниже критической, может приводить к уменьшению твёрдости вследствие распада цементита. При нагреве выше критической температуры в серых чугунах протекает процесс растворения свободного графита в аустените, приводящий к повышению концентрации Нагрев под закалку должен быть выше критической температуры (830—900° С), время выдержки определяется сечением детали и исходной структурой. Как и в случае нормализации чугуна с исходной перлитно-графитовой структурой, выдержка при закалке должна быть достаточной только для прогрева детали до заданной температуры при исходной перлитно-ферритовой и ферритовой основной металлической массе время выдержки должно быть достаточным для насыщения твёрдого раствора углеродом за счёт свободнаго графита. В последнем случае практически время выдержки находится в пределах от 0,5 до 3 час. Более длительные выдержки, не приводя к повышению концентрации не изменяют эффективности закалки.  [c.541]

Химический состав углеродистых и легированных инструненталь-н.ыхсталей приведен в табл. 41. Эти стали мало различаются по основны.м свойствам в результате закалки они получают твердость HR 62—64, а сталь марки ХВ5 до HR 67—68. Вследствие распада мартенсита при нагреве твердость их снижается до HR 59—60 после отпуска 200—2-50 С. Они получают при закалке более крупное зерно (Кя 8—10) и меньшую прочность при изгибе (до 250—260 кГ/мм ), чем быстрорежущие стали. Углеродистые и легированные стали хорошо обрабатываются резанием и давлением в холодно.м состоянии (волочением, насечкой, накаткой), подвергаются более простой термической обработке, имеют более однородную структуру с мелкими распределенными карбидами.  [c.71]

Стали аустенитно-мартенситного кло.сса. Особую группу представляют аустенитно-мартенситные коррозионно-стойкие стали, например сталь 09Х15Н8Ю. Эти стали наряду с хорошей устойчивостью против атмосферной коррозии обладают высокими механическими свойствами и хорошо свариваются. Сталь 09X15Н8Ю для повышения механических свойств подвергают закалке от 975°С, после которой структура стали—-неустойчивый аустенит и небольшое количество мартенсита. В этом состоянии сталь обладает достаточно высокой пластичностью и может быть подвергнута пластической деформации и обработке резанием. После закалки сталь обрабатывают холодом в интервале температур от —50 до —75 °С для перевода большей части аустенита ( 80 % ) в мартенсит и подвергают отпуску (старению) при 450—500 °С. При старении из а-твердого раствора (мартенсита) выделяются дисперсные частицы интерметаллидов типа П1дА1. Механические свойства стали после такой обработки приведены в табл. 10.  [c.297]


Смотреть страницы где упоминается термин Свойства и структуры сталей при отпуске : [c.305]    [c.80]    [c.363]    [c.146]    [c.317]    [c.318]    [c.341]    [c.694]    [c.252]    [c.217]    [c.199]    [c.80]    [c.100]    [c.83]    [c.39]    [c.26]    [c.206]    [c.215]   
Смотреть главы в:

Основы металловедения  -> Свойства и структуры сталей при отпуске



ПОИСК



ОТПУСК СТАЛЕ

Отпуск

Отпуск свойства

Отпуская ось

Свойства с а-структурой

Сталь Отпуск

Сталь Свойства

Сталь структура

Структура и свойства сталей



© 2025 Mash-xxl.info Реклама на сайте