Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распад вихря

Особого рода неустойчивости возникают при переходе закрученного течения в покоящуюся среду. Эксперименты на вихревых форсунках и горелках показали, что при выходе закрученного потока из горловины соответствующего вихревого устройства развиваются вторичные течения, происходит так называемый распад вихря. Считается [62, 237], что существуют 3 основных вида распада осесимметричный, спиральный и в виде двойной спирали.  [c.145]

Наблюдения показывают, что закрученные потоки (как ограниченные, так и свободные) во многих случаях - неустойчивы. Неустойчивость приводит к формированию вторичных вихревых движений, линейных и нелинейных волн, а также может быть причиной распада вихря. Однако и в устойчивых потоках могут наблюдаться различного типа возмущения, например нейтральные (инерционные) волны. В данной главе будут рассмотрены только колоннообразные вихри. Основная задача заключается в определении критериев неустойчивости вихрей и описании волн на вихрях.  [c.167]


Рис. 7.9. Распад вихря у дна тангенциальной камеры (плоское дно под нижним ярусом сопел выходная диафрагма с центральным отверстием) Рис. 7.9. Распад вихря у дна <a href="/info/317545">тангенциальной камеры</a> (плоское дно под нижним ярусом сопел выходная диафрагма с центральным отверстием)
Распад вихря в канале  [c.442]

Рис. 7.52. Распад вихря пузырькового (а) и перемежающегося (б) типов за отверстием диафрагмы в тангенциальной камере. Ке = 3,7-(определено по параметрам отверстия, с ,. = 110 мм). 6 = 4,9 (определен по характеристикам до отверстия), экспозиция I /30 с Рис. 7.52. <a href="/info/238303">Распад вихря пузырькового</a> (а) и перемежающегося (б) типов за отверстием диафрагмы в <a href="/info/317545">тангенциальной камере</a>. Ке = 3,7-(определено по параметрам отверстия, с ,. = 110 мм). 6 = 4,9 (определен по характеристикам до отверстия), экспозиция I /30 с
Другой пример относится к случаю, когда в тангенциальной камере имеются две диафрагмы (рис. 7.53). В окрестности нижней перегородки, расположенной между ярусами сопел, реализуется конический распад вихря. Однако в пространстве между двумя диафрагмами вновь формируется вихревая нить, которая упирается примерно перпендикулярно на внутреннюю поверхность конуса.  [c.455]

Распад вихря в сосуде с вращающейся крышкой  [c.456]

В работе [62] указывается также, что после распада вихря поток находится в состоянии прецессии. Аналогичной точки зрения придерживается и С.В. Лукачев, который наблюдал распад вихря в вихревом генераторе звука с соответствующим появлением прецессии вихревого ядра (ПВЯ).  [c.145]

В монографии систематизированы и обобщены сведения о концентрированных вихрях, наблюдаемых в природе и технике. Рассмотрены основные методы исследования их кинематики и динамики. Особое внимание уделено течениям с винтовой сим.метрией. Описаны модели вихревых сфуктур, применяе.мые при интерпретации экенериментальпых данных и служащие базисом для развития теоретических и численных подходов к изучению вихрей. Представлены достижения в области анализа устойчивости, 1юлн на вихрях и явление распада вихря.  [c.4]

Вихревое движение - одно из основных состояний движущейся сплошной среды. Примечательно, что во многих случаях завихренность локализуется в пространстве, вследствие чего формируются концентрированные вихри. К числу наиболее ярких примеров таких вихрей следует отнести вихревые нити, динамика которых характеризуется чрезвычайным разнообразием. Отметим, в частности, такие явления, как самоинлуцированное движение, различные неустойчивости, волнообразование, распад вихря. Типичным проявлением указанных эффектов является спиральная, или винтовая, форма оси вихря.  [c.13]


Хотя в литературе по гидродинамике вихревому движению и вихревым эффектам уделяется повышенное внимание, тем не менее не так много книг посвящено непосредственно вихрям и тем более - концентрированным. В предлагаемой монографии делается попытка осветить основные вопросы, связанные с их образованием и поведением. Поводом для написания книги послужили, в первую очередь, экспериментальные наблюдения авторов, связанные с впечатляющими картинами визуализации концентрированных вихрей, включая винтовые и двухспиральные, а также распад вихря. Впоследствии авторами был развит подход, основанный на идее винтовой симметрии закрученных потоков, который позволяет строить упрощенные математические модели и описывать многие вихревые явления. Основная часть книги посвящена теоретическому описанию динамики вихрей. Однако в последней главе приводятся детальные результаты экспериментальных наблюдений концентрированных вихрей, что дает пищу для размышлений и побуждает к дальнейшему развитию теории вихрей.  [c.13]

Для описания течения до и после распада вихря обычно используются эмпирические формулы [Лейбович, 1979, 1985]  [c.158]

Основной мотив изучения стоячих волн в закрученном потоке связан с волновой моделью распада вихря [Benjamin, 1962 Лейбович, 1985]. С другой стороны, случай осесимметричных стоячих волн примечателен тем, что уравнения Эйлера сводятся к одному эллиптическому уравнению в частных производных для функции тока i, связанной с радиальной и и аксиальной W компонентами скорости соотношениями  [c.225]

Решения II типа представляют собой одиночные стоячие волны, которые существуют только при сверхкритических значениях параметров, причем на больших расстояниях вниз и вверх по потоку течение совпадает с исходным. Данные решения являются сильнонелинейными и допускают наличие точки застоя и соответственно возвратных течений, как при распаде вихря. В то же время интересно, что слабонелинейпые решения (см. (4.77), (4.78), а также работа Leibovi h [1970]) остаются хорошей аппроксимацией для этого типа решений.  [c.230]

Если в режиме со стабильной вихревой нитью увеличивать степень крутки, то течение теряет устойчивость. При этом наблюдаются волновые явления и возмущения в виде распада вихря. Эти же явлеЕГИя реализуются нри внесеЕ1ии в поток искусственных возмущений (см. п. 7.6).  [c.402]

В пограничном слое из-за вязкого торможения жидкости радиальный градиент уже не может быть уравновешен центробежными эффектами, что вызывает радиальное движение жидкости к центру. Вследствие сохранения расхода и момента количества движения происходит локализация завихренности и генерация вихревой нити с аксиальным протоком вдоль ее оси. Разрушение структуры вихревой нити может происходить за счет ее неустойчивости или явления распада вихря. Пример распада вихря, локализованного у дна камеры, показан на рис. 7.9. Диафрагмирование выходного сечения камеры позволяет сохранить вихревую иигь на всем протяжении камеры, что продемонстрировано на рис. 7.6.  [c.405]

Винтовые вихри могут возникать либо за счет неустойчивости осесимметричного потока к спиральным модам, либо вследствие деформации прямолинейной нити путем искусственного искажения граничных условий. В первом случае спиральные вихри являются нестационарными и преимущественно трехмерными (спиральные волны, спиральный распад вихря см. п. 7.6). Здесь мы будем касаться только второго сгюсоба генерации винтовых вихрей.  [c.428]

Невозмущенные вихревые нити, изображенные на рис. 7.6, 7.7, существуют только при определенных условиях. В действительности же возмущенное состоя1ше - характерная особенность протяженных концентрированных вихрей. К возмущения. вихревой нити относятся как волнь разли1нп.1Х мод, так и распад вихря. Винтовые структуры, описанные в нн. 7.3-7.5, также представляют собой возмун1енные состояния вихря. Появление возмущений  [c.437]

Вернемся к рис. 7.41. Изображенные на снимках бегущие возмущения возникают спонтанно, распространяясь от выходного отверстия вниз (т. е. вверх по потоку). Наблюдаются следуюище характерные тины возмущений а - винтовые волны (в виде цуга) б - винтовые с переменной длиной волны в -двухспиральные г - высокочастотные винтовые д, е - в виде бегущег о распада вихря.  [c.438]


Рис. 7.43. Стоп-кадры нынуждс Ш010 бегущего распада вихря. Интервал времеии между кадрами 80 мс. Вихревой поток движется снизу вверх. Воздействие на вихревое ядро проводилось на расстоянии 50 мм от верхнего края кадра. Q 1,31 л/с. 5 = 3,5 [Алексеенко, Шторк, 19971 Рис. 7.43. Стоп-кадры нынуждс Ш010 бегущего распада вихря. Интервал времеии между кадрами 80 мс. Вихревой поток движется снизу вверх. Воздействие на вихревое ядро проводилось на расстоянии 50 мм от верхнего края кадра. Q 1,31 л/с. 5 = 3,5 [Алексеенко, Шторк, 19971
Аналогичная классификация распада вихря для свободной вихревой ттп выполнена Khoo et al. [1997]. Соответствующий экспериментальный yna TOt показан на рис. 7.40в. Здесь вихревая нить генерируется во вращающемся со суде при отсосе сверху через тонкую трубку (как и в эксперименте Max-worthy et al. [1985]). Соответствующие результаты описаны в табл. 7.3, кото рая для удобства сопоставления приведена симметрично табл. 7.2. Полагает ся, что представленными в двух таблицах данными исчерпываются все ос новные типы распада вихря. Для полноты картины на рис. 7.44-7.47 пред ставлены режимные карты, а на рис. 7.48-7.55 - дополнительные иллюстра ции но распаду вихря, полученные в иных условиях.  [c.443]

Таблица 7.3. Распад вихря в неограниченном потоке, по данным Khoo et al. [ 1997] (см. схему на рис. 7.40е). Дополнительные пояснения по тексту. Изображения развернуты по горизонтали. Таблица 7.3. Распад вихря в неограниченном потоке, по данным Khoo et al. [ 1997] (см. схему на рис. 7.40е). Дополнительные пояснения по тексту. Изображения развернуты по горизонтали.
Рис. 7.45. Зависимость типов распада вихря в неограниченном пространстве от числа Pei нольдса и параметра крутки S [Khoo et al., 1997]. Вставка показывает области ломипирующк типов распада. Обозначения типов распада см. в табл. 7.3. I - линии постоянного расхо жидкости 2 - менее доминирующий тип распада 3 - одинаково доминирующий Рис. 7.45. Зависимость типов распада вихря в неограниченном пространстве от числа Pei нольдса и <a href="/info/238280">параметра крутки</a> S [Khoo et al., 1997]. Вставка показывает области ломипирующк типов распада. Обозначения типов распада см. в табл. 7.3. I - линии постоянного расхо жидкости 2 - менее доминирующий тип распада 3 - одинаково доминирующий
Pl . 7.47. Обобщенная карта режимов распада вихря [Khoo et al., 1997]. Уел. обозн. см. на рис. 7.45  [c.449]

Рис. 7.48. Распад вихря в окрестности диафрагмы тангенциальной камеры. Re = 1,410 (определено но параметрам отверстия, d , = 70 мм), 5 = 6,86 (определен по характеристикам камеры до диафрагмы) а - экспозиция i/30 с o - 1/60 с в - фотовспышка. Короткая экспозиция демонстрирует двухспиральный тип расиа ча. При длительной экспозиции воспринимается как Рис. 7.48. Распад вихря в окрестности диафрагмы <a href="/info/317545">тангенциальной камеры</a>. Re = 1,410 (определено но параметрам отверстия, d , = 70 мм), 5 = 6,86 (определен по характеристикам камеры до диафрагмы) а - экспозиция i/30 с o - 1/60 с в - фотовспышка. <a href="/info/240173">Короткая экспозиция</a> демонстрирует двухспиральный тип расиа ча. При <a href="/info/240172">длительной экспозиции</a> воспринимается как
Тип 2, спиршьный распад spiral breakdown) — является преобладающим во многих случаях и имеет наиболее обширную область существования по числам Рейнольдса к параметру крутки. В неограниченном пространстве спираль завита против потока и вращаемся с потоком аналогично спиральному распаду вихря при обтекании треугольного крыла. В то же время в расширяющемся канале спираль, наоборот, завита по потоку, ио вращается таюке с потоком. Тип 2 может периодически переходить в типы О и 1.  [c.451]

Рис. 7.49. Спиральный распад вихря за отверстием диафрагмы в таигспциалыюй камере. Re = 4-10 (определено по параметрам выходного отиерстия, = 110 мм), S = 5,52 (определен по характеристикам камеры до отверстия) а - визуализация при общем освещении, экхпози-ция 1/60 с б - спетовой нож в центральном сечении, 1/30 с <з - световой ио-ж в ближнем вертикальном сечении, 1 /30 с г - схема течения Рис. 7.49. Спиральный распад вихря за отверстием диафрагмы в таигспциалыюй камере. Re = 4-10 (определено по <a href="/info/12248">параметрам выходного</a> отиерстия, = 110 мм), S = 5,52 (определен по характеристикам камеры до отверстия) а - визуализация при общем освещении, экхпози-ция 1/60 с б - спетовой нож в центральном сечении, 1/30 с <з - световой ио-ж в ближнем вертикальном сечении, 1 /30 с г - схема течения
Приведем еще два примера распада вихря конической формы. На рис. 7.9 показан конический распад непосредственно у дна тангенциалыюй камеры. Здесь интересно то, что после распада вихря вихревая нить немедленно восстанавливается. Внешне похожая картина может наблюдаться и для торнадо (см. цв. рис. В1.).  [c.455]


Смотреть страницы где упоминается термин Распад вихря : [c.19]    [c.19]    [c.168]    [c.182]    [c.183]    [c.225]    [c.230]    [c.409]    [c.410]    [c.421]    [c.433]    [c.438]    [c.438]    [c.442]    [c.443]    [c.443]    [c.444]    [c.454]    [c.455]    [c.456]    [c.457]   
Введение в теорию концентрированных вихрей (2003) -- [ c.443 ]



ПОИСК



V°-Распад

Вихрь

Распад вихря бегущий

Распад вихря в канале

Распад вихря в сосуде с вращающейся крышкой

Распад вихря закрытый

Распад вихря пузырьковый



© 2025 Mash-xxl.info Реклама на сайте