Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оборудование для армирования

Оборудование для армирования попереч  [c.150]

Применение прессовочных и листовых формовочных композиций оказалось эффективным для изготовления крупногабаритных внешних деталей автомобилей. Одновременно увеличивается объем их применения для производства различных видов перегородок, кожухов воздуходувок, панелей и различных видов корпусов приборов и оборудования. Термопласты, армированные стекловолокном, находят широкое применение для изготовления деталей машин для мытья посуды, стиральных машин, а также компьютеров, насосов и т. п.  [c.367]


Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства.  [c.88]

Резание. Как и в случае стеклопластиков, при резании углепластиков необходимо использовать алмазные режущие инструменты или инструменты, изготовленные из сверхтвердых сплавов. Обычная быстрорежущая сталь при обработке армированных пластиков очень быстро изнашивается. При точении или резании углепластиков на токарных станках или фрезеровании следует использовать оборудование для отсоса стружки, пыли и других отходов.  [c.116]

Только в последние годы основные изготовители прессов разработали конструкции оборудования для формования армированных пластмасс. Предприятия, впервые начинающие заниматься прессованием, часто приобретают подержанные прессы, мало приспособленные для формования именно армированных пластмасс.  [c.179]

Профильные поверхности фрезеруют фасонными фрезами, наборами фрез, червячными фрезами и с помощью копирных устройств. Затылованные или острозаточенные фрезы из быстрорежущей стали, армированные твердым сплавом или с СМП, характеризует небольшое число зубьев, малая подача на зуб и, как следствие этого, низкая производительность. У острозаточенных фасонных фрез большее число зубьев и лучшие геометрические параметры, поэтому применение их предпочтительно при наличии специального оборудования для переточки.  [c.554]


Из этого ряда сформулированных требований и анализа технологического процесса изготовления армированных деталей из ПМ, имеющих металлическую арма-туру, формованием характерны следующие недостатки [152] 1) сложность конструкции оснастки 2) необходимость усложнения оборудования для исключения применения ручного труда 3) низкая производительность труда (однако трудозатраты в этом случае все же меньше, чем при формовании резьбы в готовых деталях) [9, S. 287] 4) прерывистость технологического цикла литья под давлением и прессования, что влечет за собой увеличение простоев оборудования 5) сравнительно высокий процент брака. Механизация и автоматизация установки металлической арматуры в формах значительно увеличивают стоимость оборудования для обработки ПМ.  [c.284]

Молоты устанавливаются на железобетонных фундаментах. Глубину заложения фундамента, площадь подошвы и необходимость его армирования устанавливают в зависимости от качества грунта, уровня грунтовых вод, близости расположения другого оборудования, для которого сотрясения нежелательны, и других причин.  [c.77]

Стендовый способ производства характерен тем, что все процессы (армирование, формование, твердение) совершаются в неподвижных формах, которые собираются на гладкой площадке-стенде. Изделия в процессе их изготовления и до приобретения бетоном необходимой прочности остаются на месте, а оборудование для выполнения отдельных операций перемещается от одной формы к другой. Стендовый способ дает возможность изготовлять широкую номенклатуру изделий любых габаритов и обычно применяется на открытых полигонах. Особенно он эффективен при изготовлении длинномерных, предварительно напряженных изделий.  [c.298]

В связи с этим различают две группы оборудования для линейного армирования для непрерывного армирования.  [c.303]

Оборудование для линейного армирования состоит из приспособлений для захвата и удержания концов арматуры и машин для ее натяжения.  [c.303]

Оборудование для непрерывного армирования предназначено для навивки на контур изделия непрерывной нити высокопрочной проволоки с заранее заданным натяжением. В плоских изделиях контуром для навивки служат, как правило, специальные выдвижные штыри или другие опоры на поддоне формы, а в круглых — само изделие.  [c.305]

Для изготовления напряженно-армированных длинномерных изделий предусмотрен специальный стенд, где имеется оборудование для протаскивания и натяжения одновременно двух высокопрочных проволок. Изделия для промышленного строительства формуют в металлических формах. Для тепловлажностной обработки изделий в формах предусмотрены паровые рубашки.  [c.247]

Справочное пособие состоит из трех разделов, посвященных машинам и оборудованию для арматурных и бетонных работ. В разделе I освещены основные положения по выбору и применению машин и оборудования, вопросы техники безопасности. В разделе втором главы I—III посвящены оборудованию, используемому при армировании возводимых конструкций ненапрягаемой арматурой, преимущественно в виде сварных арматурных каркасов и сеток. В главе IV содержатся характеристики оборудования и устройств, применяемых при заготовке и натяжении напрягаемой арматуры. В разделе третьем описаны машины, оборудование и приспособления, применяемые при приготовлении бетонной смеси (главы I и II), ее подаче, распределении и укладке в конструкции (главы III—IX), и уплотнении смеси (глава X).  [c.3]

Для изготовления армированных деталей высокочастотного оборудования Для изготовления деталей высокочастотной изоляции повышенной теплостойкости  [c.11]

Стекловолокно используют для изготовления тканых, вязаных и плетеных изделий, а также для армирования пластмасс при изготовлении различного оборудования. Большое значение при изготовлении стеклопластиков имеет совместимость стекловолокна и связующих веществ (полиэфирных смол), поэтому для достижения адгезии стекловолокно предварительно пропитывают кремнийорганическими соединениями.  [c.470]

В пятом разделе даны особенности расчета технологических параметров и выбора соответствующего оборудования для способов получения отливок со специальными свойствами. Такими способами являются суспензионное литье и получение литых композитов, способы литья с направленной кристаллизацией, армированием отливок и наплавлением их поверхностей.  [c.8]

Первой деталью, выбранной для этой программы, была хвостовая секция самолета Г-111, расположенная между двумя двигателями. Деталь имела следующие размеры полную длину 3764 мм (от отсека фюзеляжа, расположенного на отметке 610, отсчитываемой от носовой точки самолета, до отсека, расположенного на отметке 770), глубину 1219 мм, ширину 914 мм. Предназначенная для испытаний задняя (расположенная между отметками 673— 770 от носовой точки) секция этой детали имела длину 2464 мм. Передняя часть детали была спроектирована так, чтобы обеспечить разрушение в испытательной секции. Одной из задач программы являлось исследование возможностей применения трех типов перспективных композиционных материалов эпоксидных боро- и углепластиков и алюминия, армированного борными волокнами. Вследствие сокращения поставок борных волокон вскоре после начала выполнения программы основное внимание было уделено углепластикам. Для упрощения технологии и снижения стоимости оборудования форма поперечного сечения первой фюзеляжной детали была выбрана постоянной в отличие от основной алюминиевой конструкции, имеющей переменное сечение. Расчетные нагрузки определяли из типовых критических расчетных условий для каждого узла.  [c.159]


Эпоксидные смолы. Существует множество эпоксидных смол, обеспечивающих высокие эксплуатационные характеристики химического технологического оборудования, работающего в жестких условиях. При использовании эпоксидных смол обычно требуется дополнительная термообработка изделий, как правило, необходимая при изготовлении трубопроводов, емкостей и других конструкций. Эпоксидные смолы дороги, а процесс изготовления длительный. Обычно они используются при производстве изделий методом намотки, такие изделия отличаются высокой прочностью. Эпоксидные армированные пластики в основном применяют для изготовления трубопроводов и емкостей.  [c.320]

Автогудронаторы Асфальтоукладчики Нарезчики швов однодисковые Нарезчики швов продольных и поперечных многодисковые Оборудование для армирования поперечных швов в цементобетонном покрытии Машины и оборудование для герметизации швов цементобетонных покрытий, за прессовки неопрено-вых прокладок  [c.142]

Б химической промышленности при изготовлении оборудования из армированных пластиков наиболее широко применяют полиэфирные, эпоксидные, фурановые смолы, связующие на основе сложных виниловых эфиров. Однако имеется ряд примеров, когда биполимерные материалы на основе термопластов и реактопла-стов использовались уникальным образом для успешного решения той или иной задачи. Наряду с полиэфирными и эпоксидными смолами получили распространение также фенольные смолы и диалил-фталатные композиции. Эти материалы уже широко используются на химических заводах. Детали из армированных пластиков широко изготовлялись с применением эпоксидных смол, смол на основе сложных виниловых эфиров и полиэфирных связующих, причем последние получили наибольшее распространение при изготовлении крупногабаритных изделий.  [c.311]

Для защиты от коррозии полицропилен используется в виде листов, пленок, порошков и волокон для армированных покрытий. Листовой полипропилен толщиной 1—2,5 мм применяется для облицовки емкостей с агрессивными жидкостями. Полипропиленовые пленки используются для гидро-, паро- и газоизоляции оборудования и сооружений при положительных температурах. Порошковые полипропиленовые покрытия целесообразно использовать для защиты от коррозии деталей, работающих при повышенных температурах.  [c.124]

Профильные поверхности фрезеруют фасонными фрезами, наборами фрез, червячными фрезами и с помощью копирных устройств. Затылованные или острозато-ченные фрезы из быстрорежущей стали (табл. 21), армированные твердым сплавом или с СМП, характеризует небольшое число зубьев, малая подача на зуб и, как следствие этого, низкая производительность. У остроза-точенных фасонных фрез большее число зубьев и лучшие геометричеекие параметры, поэтому применение их предпочтительно при наличии специального оборудования для переточки. Наборы фрез с СМП, рассчитанные на использование стандартных пластин, ограничивают обрабатываемый профиль прямыми, угловыми и, частично, радиусными участками. Наборы фрез (рис. 184) рекомендуется хранить и эксплуатировать собранными на оправках. В чертежах наборов фрез указывают коды всех входящих в них инструментов, расстояния между фрезами, допустимую разницу диаметров, торцовое и радиальное биения, а также другие уеловия, обеспечивающие эксплуатацию без дополнительной подналадки на станке.  [c.329]

Eng. разрабатывается технология формования профильных изделий с применением полисульфона, полиэфирсульфона, пластифицированного полиимида и т. д. Использование таких полимерных матриц позволяет достигать скорости формования круглых стержней диаметром около 5 мм порядка 10 м/мин [33]. Для получения профильных изделий со сложными схемами армирования начали использовать методы протяжки слоистых материалов на основе волокнистых матов или тканей. В настоящее время разрабатываются методы получения трубчатых изделий, сочетающие намотку спирального слоя и протяжку [35, 36]. В качестве примера применения материалов со сложной схемой армирования, полученных методом протяжки, можно назвать лопасти ветряных дзигателей, имеюидае сложный профиль поперечного сечения [37]. Фирмой Goldsworthy Eng.в настоящее время разрабатывается оборудование для формования полуфабрикатов для листовых автомобильных рессор, имеющих криволинейную поверхность и переменное поперечное сечение.  [c.94]

Марки 4X22 и ЧХ28Д2. Чугуны этих марок высокоустойчивы против абразивного износа и истирания, поэтому их используют для производства размольного оборудования, грохотов и склизов, агломерационных машин, песко- и дробеструйных камер, работающих при повышенных температурах кроме того, из таких чугунов изготовляют вставки для армирования брусьев вторичной зоны охлаждения установок непрерывной разливки стали, детали угле-и рудоразмольных мельниц, ковшей, пескометов и дробеметов.  [c.164]

Технологический процесс производства Сандвичевых структур (сотовых конструкций) требует соблюдения трех обязательных условий использования давления использования температуры (необходимо учесть, что и давление, и температура должны быть в точно заданных регламентами пределах в течение всего времени отверждения адгезивов) обеспечение инструментом и оборудованием, которое будет совмещать детали и выдерживать их под нагрузкой в течение всего режима отверждения. Существует много технологических приемов обеспечения условий отверждения Сандвичевых структур от формования в вакуумных мешках до автоклавного прессования. В основном все оборудование для производства Сандвичевых структур аналогично оборудованию для производства армированных пластиков, так как сандвичевые структуры являются одним из видов таких композитов. Однако давление при производстве Сандвичевых структур почти всегда ниже, что связано с особенностью свойств заполнителя. Стоимость оборудования в этом случае может быть несколько более низкой. Кроме того, низкие максимальные давления при соединении элементов Сандвичевых структур приемлемы и для ряда других композиционных материалов.  [c.377]


Наиболее производительное и распространенное оборудование для резки прокатного материала — это дисковые пилы. В качестве режущего инструмента применяется отрезная фреза диаметром 275—2000 мм, тело которой изготовляется из углеродистой стали, а режущие зубья из быстрорежущей стали отдельными сегментами, которые крепятся заклепками по окружности диска. Применяют также сегменты, армированные твердым сплавом Т15К6. Зажим заготовки и подача дисковой пилы осуществляется гидравлически. Подача на один зуб зависит от конструкции станка, материала заготовки, размеров дисковой пилы, ширины прорезания и изменяется от 0,02 до 0,2 мм, что соответствует минутной подаче от 30 до 300 mmImuh. Скорость резания по стали 18— 30 mImuh. Станок имеет высокую производительность и дает хорошее качество обработки, правда, с большими потерями материала на стружку, чем при резании иа приводных ножовках.  [c.18]

Фундаменты под оборудование для холодной высадки делают из бетона марки 200, армированного по контуру. Ориентировочные объемы фундаментов под это оборудование и глубина заложения их по-дощв указаны в табл. IV. 15.  [c.94]

Пресс-порошки типа Сп — специального назначения (Сп 3-342-02, К-214-2, ГОСТ 5689—79) —отличаются повышенными механическими и электрическими показателями, тропикостойки, применяются для армированных и неармированных деталей электротехнического оборудования, эксплуатация которых допустима в среде бензина и масла.  [c.145]

Волокна, полученные любым из рассмотренных способов, вводят в матрицу. При изготовлении металлокерамических армированных композиций готовят шихту из смеси порошка матрицы и волокон, которую затем прессуют и спекают. В процессе приготовления шихты важно обеспечить равномерность распределения волокон в матрице, которое иногда нарушается из-за образования комков волокон в ходе перемешивания. Применяют механическое и химическое смешивание. Шихту можно прессовать любым известным способом. Следует указать, что при прессовании изделий в прессформах волокна ориентируются в плоскостях, расположенных нормально к сжимаюшим усилиям, в самих же плоскостях они ориентированы хаотично. Экструзией и прокаткой можно получить направленную структуру композиций, что является важным преимуществом этих методов формования. Спекание спрессованной смеси исходных материалов проводят при температуре 0,7—0,8 Гпл матрицы, чаще всего в атмосфере водорода, инертных газов или вакууме. При спекании композиций наряду с процессами сцепления, уплотнения и упрочнения может происходить и взаимное растворение компонентов. Для армированных систем важно ограничить спекание температурновременными пределами, при которых достигается достаточно прочное сцепление, а заметного растворения не наблюдается. После спекания изделия могут быть подвергнуты дополнительной обработке с целью повышения их физико-механических свойств или придания окончательных размеров и формы. Спекание сформованной смеси исходных материалов может быть заменено пропиткой спрессованных волокон расплавленным материалом матрицы. При этом отпадает необходимость в приготовлении шихты. Пропиткой можно получить практически беспористый материал, равномерно распределять компоненты, варьировать в широких пределах объемное содержание арматуры, диаметр и длину волокон, создавать нужную ориентацию, сохранять исходную форму и размеры волокон, использовать стандартное оборудование термических участков. Однако для получения хорошей композиции необходимо смачивание волокон жидкой матрицей. Кроме того, при пропитке жаропрочными ма-  [c.465]

Оборудование для напряжения арматуры. Такое оборудование по способу укладки и натяжения арматуры можно разделить на машины для линейной укладки, когда операции укладки и натяжения выполняются раздельно, и машины для непрерывной навивки с одновременным натяжением. Натяжение арматуры этими машинами осуществляется либо механическим, либо электротермическим способом. Может применяться также комбинированный способ — электротермомеханический. Натяжные устройства включают в себя упоры, за которые закрепляется (анкеруется) арматура в процессе ее натяжения. Упоры могут быть выполнены из швеллеров или двутавров, нижний конец которых прочно заделан в фундамент, или состоять из вертикальных штырей, размещаемых на форме. В последнем случае армирование производится непрерывно. Кроме упоров имеется еще комплект захватных (зажимных) приспособлений, с помощью которых усилия натяжного устройства передаются арматуре, и собственно натяжное устройство, которое создает усилие натяжения.  [c.426]

Непрерывный заготовочный стан 850/700/500. Стан изготовлен фирмой "Шкода" (Чехия) и введен в эксплуатацию в 1970 г. Основная часть оборудования реконструирована в 1983 г. по проекту Колпинского отделения ВНИИМЕТМАШ. Дополнительное оборудование изготовлено в СССР и ЧССР. Стан предназначен для прокатки блумов сечением 370 X 370 мм в квадратную заготовку сечением (80 х 80) - (150 х 150) мм и плоскую заготовку толщиной 120 - 160 и игириной 200 - 270 мм из сталей углеродистых обыкновенного качества, конструкционных обыкновенного качества, для армирования железобетонных конструкций, углеродистых качественных конструкционных, легированных конструкционных, конструкционных для мостостроения и низкоуглеродистых.  [c.364]

Обмазки огнеупорные нанесение 302 применение и состав 301, 302 Оборудование для горячего плакирования 174 для изготовления армированных отливок 364 моделей 219, 220 для литья вакуумным всасыванием 325 — 327, под всесторонним газовым давлением 335 — 341, под низким давлением 303 — 307, с кристаллизацией под давлением 361 — 364, с противодавлением 322, 323, непрерывного вертикального 553 — 555, непрерыв-норо горизонтального 537, 541—543, полунепрерывного вертикального литья труб из серого чугуна 561, 562, лент на подвижных кристаллизаторах 578, 579 Оборудование для приготовления суспензий 236 — 238 для удаления разовых моделей 238, 239 для ультразвуковой обработки расплавов алюминиевых сплавов 482 — 488, магния 481 для электрошлакового литья 613 — 616 для электрошлакового расплавления металла 414—417 Оснастка для изготовления оболочковых форм 165—168 для литья в облицованный кокиль 128, под низким давлением алю-  [c.732]

Несмотря на эти недостатки, использование стеклонитей для армирования пленки весьма распространено, особенно для изучения реакций отверждения. Этот метод получил название торзионный анализ , причем имеется промышленное оборудование для его проведения [34, 35]. При неправильной геометрии нитей невозможно получить модуль покрытия, но для изучения реакций отверждения метод вполне удовлетворителен. Если производится постепенное изменение температуры, результаты могут зависеть от скорости ее изменения. Гораздо более серьезным, с нашей точки зрения, является вопрос о смачивании и адгезии (соответственно жидких и твердых покрытий) к волокнам стеклоткани, что может влиять на результаты. Имеются работы, в которых показано, что существенные отклонения может внести склеивание волокон стеклоткани.  [c.406]

Первым примером такого рода композитов, получивших достаточно широкое практическое применение, служат стеклопластики (мы не говорим здесь об известных с глубокой древности саманных постройках, т. е. о композитах глина — солома, механические свойства которых совсем не плохи). Перемешивая полимерную массу с мелко изрубленным стеклянным волокном, мы получаем первый пример композита с хаотическим армированием. Прочность такой пластмассы выше, чем прочность неар-мированного материала, однако потенциальная прочность стеклянного волокна используется при этом далеко не полностью, разрушение всегда происходит по матрице, стеклянные волокна не разрываются, а выдергиваются из пластмассы. Следует заметить, что изделия из хаотически армированных пластиков, например полиэтилена, изготовляются обычными способами — путем формования, выдавливания, литья. Поэтому стандартное технологическое оборудование оказывается пригодным для получения таких изделий.  [c.684]


Одним из носителей, которые использовались для запуска кораблей Аполлон , был Сатурп-П . Использование стеклопластиков на Сатурне S-II типично для ракет (рис. 9). Для защиты оборудования и несущих конструкций у основания Сатурна от выхлопа из сопел использовались термоэкраны из армированного пластика и многослойная тепловая защита, состоявшая из двух слоев со стеклянной сердцевиной и центральной переборкой между слоями, служащей для уменьшения конвективного теплообмена. Внутренняя сторона фенольного стеклопластика была армирована стеклом типа S, а стороны, обращенные  [c.112]

Легкость, жесткость, прочность и формуемость стеклопластиков обусловили их использование для изготовления элементов оборудования ванных комнат, например ванн и душевых кабин. При изготовлении ванн поверхности окружаюпгих стен часто формуются заодно с ванной, что позволяет избежать щелей и соединительных узлов. Целесообразно формовать цельные ванные комнаты, включая пол, стены и потолок из армированной стекловолокнами полиэфирной смолы. Их поверхности покрывают тонким неармированным слоем полиэфирной смолы либо листовым термопластом. Такие поверхности обладают меньшей твердостью и стойкостью против воздействия острых предметов, чем фарфоровая эмаль, но их проще восстанавливать.  [c.291]

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армируюш их стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальдегидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы. В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.  [c.310]

Биполимерный пластик, состоящий из поливинилхлорида и полиэфирного стеклопластика, был использован для изготовления смесительной камеры. При конструировании этой системы учитывалась стойкость поливинилхлорида к кислотам с высокой окисляющей способностью. Основными преимуществами таких биполимерных композиционных систем являются относительно высокая прочность в результате армирования термопластичного — термореактивного связующего стекловолокнистым наполнителем химическая стойкость как результат сочетания термопластов и термореактивных полимеров экономия оборудования стойкость против абразивного износа стойкость к УФ-излучению оптимальные эксплуатационные характеристики, сочетающиеся с химической стойкостью и стойкостью против абразивного износа по сравнению с композициями на основе органических волокон и связующего огнестойкость при добавлении к связующему трехокиси сурьмы.  [c.330]

Большинство химических процессов включают транспортировку загрязненных выхлопных газов или воздуха из баков, емкостей или другого технологического оборудования [9]. Иногда транспортировка выхлопных газов составляет значительную часть технологического процесса. Системы перекачки имеют различную производительность от 28 м /мин (небольшая установка, перегоняющая выхлопные газы) до 28 000 м /мин (большая система вентиляторов). Кроме того, имеются тысячи установок производительностью от 280 до 1000 м /мин. Для удобства при эксплуатации и выдержки размеров вентиляторов и трубопроводов в регулируемом диапазоне большие вентиляционные системы делят на ряд более мелких. Например, одна большая установка, предназначенная для транспортировки 8500 м /мин воздуха, содержащего пары кислоты, была разделена на десять систем меньшей производительности, пять из которых транспортировали по 1020 м /мин воздуха, а остальные — по 680 м /мин воздуха. Системы такой производительности идеальны для использования в них стеклонпастикоБых вентиляционных труб, вентиляторов, а также выводных труб и заслонок (регуляторов тяги). При условии химической совместимости возможно применение огнестойких смол. Армированные пластики этого типа обладают определенными преимуществами по сравнению с металлическими системами, которые могут подвергаться коррозии, или системами, облицованными резиной, прежними стандартными системами.  [c.337]

Если завод предполагает выпускать значительный объем продукции из армированных пластиков, необходимо иметь цех, назначение которого — обеспечение безопасных условий работы. Основное оборудование и оснастка этого цеха столы для раскроя, пескоструйные аппараты, несколько вытяжных зондов, две бочки связующего емкостью 208 л зажимные приспособления, облегчающие транспортировку труб шлифовальный станок стеллан И для хранения добавок, используемых с эпоксидными и полиэфирными связующими, и соответствующей оснастки стеллажи для зажимных приспособлений и форм, фланцев, соединительных частей трубопроводов холодильник объемом 0,25 м для хранения катализаторов, из которого удалены все возможные источники воспламенения помещения для хранения нафтената кобальта и технологической оснастки стенды из труб для комплектов зажимных приспособлений металлические емкости для отходов.  [c.355]

Композиционные материалы со свинцовой материцей, армированные углеродными волокнами, применяют в химической промышленности при пропзЕОДстве батарей и аккумуляторов, в строительстве, в изделиях, работающих на трение, и др. Эти материалы имеют особое значение, так как они приобретают конструкционные свойства. Предел прочности и модуль упругости свинца равен 1,4 кгс/мм и 1400 кгс/мм соответственно. Армирование свинца углеродными волокнами дает возможность повысить указанные свойства и получить композиционный материал с пределом прочности и модулем упругости более чем в 10 раз выше, чем у свинца. Это позволяет значительно расширить области применения композиционных материалов на основе свинца в химической, строительной и других отраслях промышленности для оборудования и аппаратуры, обладающей высокой стойкостью в агрессивных средах, способных подавлять звуковые колебания, поглащать гамма-излучения и выполнять другие функции.  [c.239]


Смотреть страницы где упоминается термин Оборудование для армирования : [c.299]    [c.190]    [c.141]    [c.174]    [c.437]    [c.39]    [c.253]    [c.429]   
Смотреть главы в:

Строительные машины Издание 4  -> Оборудование для армирования



ПОИСК



Армирование



© 2025 Mash-xxl.info Реклама на сайте