Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллы смешанные

Кривые резонанса 422. Кристалл-рефрактометр 710. Кристаллы смешанные 179.  [c.465]

Продукты химической коррозии металлов — окисные и солевые пленки — имеют ионную структуру. В отличие от жидких электролитов с ионной проводимостью (л + а = 1) ионные кристаллы обладают различными типами проводимости ионной (п + 3 = 1), электронной ( э = 1) и смешанной (п + а + + э = 1) проводимостью (табл. 5) здесь п , и — числа переноса катионов, анионов и электронов соответственно. Если в общем случае = I, то число переноса электронов  [c.34]


В реальном кристалле возможно также образование смешанной (криволинейной) дислокации — сочетания краевой и винтовой дислокаций.  [c.471]

Смешанные способы возбуждения возмущений. В тех случаях, когда требуется получить и сохранить возмущения малой амплитуды, используются электрические и электронные способы возбуждения. В этих способах для приведения в действие преобразователя, превращающего электрическую энергию возбуждающего тока в механическую энергию волны напряжений в теле, используется переменный ток, частота волн при этом лежит между 20 кГц и 50 мГц. С помощью соответствующих контуров можно получать или непрерывный ряд волн, или импульсы, состоящие из коротких серий волн высокой частоты, повторяющихся регулярно с низкой частотой. Для этого используются преобразователи, принцип действия которых основан на магнитострикционном или пьезоэлектрическом эффектах. Материалами для пьезоэлектрических преобразователей кроме кристаллов кварца служат искусственные ферроэлектрические кристаллы (в частности, титанат бария в виде поликристаллической керамики), имеющие по сравнению с естественными кристаллами большую чувствительность и меньшее сопротивление. Однако температура Кюри искусственных кристаллов сравнительно низка (при нагревании выше этой температуры пьезоэлектрические свойства пропадают). Материалами для магнитострикционных преобразователей служат ферромагнитные элементы и сплавы. Максимальные деформации в обоих случаях определяются механическими свойствами материала тела. Для возбуждения слабых импульсов напряжений используют искровой способ, предложенный Кауфманом и Ревером [52]. Преимущество этого способа состоит в том, что искра действует как точечный источник, тогда как пьезоэлектрический преобразователь, благодаря дифракции, дает сложную волновую картину.  [c.17]

Надо отметить, что если температура пересыщенного воздуха выше О °С, то туман представляет собой взвешенную капельную влагу, если ниже О °С — то кристаллы льда. Возможно существование в воздухе одновременно капелек влаги и кристаллов льда. Такое состояние называется смешанным туманом и наблюдается при температуре, близкой к О °С. В полностью насыш,енном или  [c.147]

Состав смеси в точке экстремума называется азеотроп-н ы м. Знание точек экстремума имеет большое практическое значение, так как при достижении их из-за равного состава х" = х кончается процесс ректификации. Те же закономерности имеют место для твердых растворов, причем область пара занимает на диаграмме состояний жидкий расплав, а область жидкости — смешанные кристаллы.  [c.230]


Прочность металлов определяется межатомными связями внутри самого зерна и силами сцепления, действующими по границам зерен. Разрыв связей между атомами в самом кристалле вызывает разрушение при низких температурах и больших напряжениях. При высоких температурах и малых напряжениях менее прочными оказываются границы зерен. Чем длительнее испытание при высокой температуре, тем вероятнее межкристаллит-ный характер разрушения. При умеренных напряжениях и температурах возможен смешанный характер разрушения, когда поверхность, по которой происходит разрушение, проходит частично по зернам и частично по их границам.  [c.79]

Примером принципиально возможного ионита с жесткой кристаллической решеткой может служить любой трудно растворимый электролит. Однако возможность практического применения такого ионита резко ограничена тем, что замена ионов А кристаллической решетки какими-либо ионами В (находящимися в растворе) может происходить лишь при условии, что заряды ионов А и В равны, а радиусы их очень близки (случай образования твердых растворов или смешанных кристаллов). Если же ионы А и В не  [c.172]

Если состав смешанного тумана состоит из кристаллов льда и мелкодисперсных капель воды с радиусом менее 1 мкм, то эксергия определяется по формуле  [c.125]

Смешанные кристаллы бромида и иодида таллия применялись во время второй мировой войны. Эти кристаллы, обладающие способностью пропускать инфракрасные лучи очень длинных волн, нашли применение  [c.674]

При кристаллизации полимеров из расплава возможно фракционирование отдельных видов молекул. Так, при кристаллизации смешанных кристаллов полиэтилена и полидейтероэтилена происходит преимущественно кристаллизация высокомолекулярного полидейтероэтилена, а молекулы по-  [c.64]

Эйкен и Кун [26] измерили тепловое сопротивление смешанных кристаллов КС1 и кВг при сравнительно высоких температурах (при температурах жидкого кислорода). Добавочное тепловое сопротивление, вызванное эффектом самого смешивания, почти не зависело от температуры. То же самое было найдено Девятковой и Стилбансом [47] в случае кристаллов КС1 с известной концентрацией -центров в той же температурной области. Эксперименты последних дали бы исключительно интересные результаты, если бы были проделаны при водородных температурах.  [c.252]

Разбавленные хромо-калиевые квасцы. Де-Клерком, Стенландом и Гортером [76 былп выполнены экснерименты при самых низких температурах, достижимых при помощи смешанного кристалла хромо-калиевых и алюминиево-калиевых квасцов. Образец представлял собой стеклянную сферу, заполненную кристалла ш, содержавшими 21,3 иона алюминия на каждый ион хрома.  [c.532]

Одновременные требования парамагнетизма, сверхтонкой структуры и радиоактивности с периодом полураспада достаточной продолжительности существенно ограничивают выбор ядер для этих экспериментов. Тем не менее описанным методом было проведено большое количество успешных экспериментов. Наиболее подробные исследования были выиолнены на Со . В Оксфорде [352—355] в экспериментах использовались смешанные кристаллы, имевшие состав (1% Со, 12% Си, 87% Zn) Rb2(S0 )2-6H20. В качестве охлаждающего агента применялись ионы меди. Интенсивность у-лучей измерялась в направлениях и (см. и. 40) была найдена анизотропия, доходившая до 33%. Исследовалась также линейная поляризация у-излучепия [356].  [c.601]

Тщательный анализ экспериментальных данных показывает, что закритические переходы очень распространены, но их часто причисляют к переходам иного типа. В большинстве случаев наблюдаемые скачки являются результатом неудачной экстраполяции экспериментальных данных или перехода в докритичес-кую область. Эти переходы встречаются во всех трех агрегатных состояниях. Например, в кристаллическом (а-Р-переход в кварце в смеси орто- и пара-дейтерия в ферромагнетиках и сегнето-электриках), в жидком состоянии — в растворах и жидких кристаллах, в газах—критический переход жидкость — газ. Очень интересный критический случай перехода в анизотропной среде представляет а-Р-переход в кварце. Он сопровождается резко выраженной критической опалесценцией и экстремумами нескольких КУ. Но самым интересным является возможность непосредственного наблюдения смешанного состояния обеих граничных фаз благодаря различию их кристаллических структур а- и Р-кварцы имеют различные показатели преломления, поэтому, освещая кварц в смешанном состоянии, можно визуально или  [c.248]


Тщательный анализ экспериментальных данных показывает, что закритические переходы омень распространены, но их часто причисляют к переходам иного типа. В большинстве случаев наблюдаемые скачки являются результатом неудачной экстраполяции экспериментальных данных или перехода в докритическую область. Эти переходы встречаются во всех трех агрегатных состояниях. Например, в кристаллическом ((а—р)-переход в кварце в смеси орто- и парадейтерия в ферромагнетиках, находящихся под действием магнитного поля и сегнетоэлектриках при наличии электростатического поля), в жидком (в растворах и жидких кристаллах), в газах (классический переход жидкость — газ ). Очень интересный случай критического перехода в анизотропной среде представляет (а—р)-переход в кварце. Он сопровождается резко выраженной критической опалесценцией и экстремумами нескольких КУ. Но самым интересным является возможность непосредственного наблюдения смешанного состояния обеих граничных фаз благодаря различию их кристаллических структур а- и р-кварцы имеют различные показатели преломления, поэтому, освещая кварц в смешанном состоянии, можно визуально или на фотографии заметить микрогетерогениость системы, т. е. одновременное сосуществование обеих кристаллических структур. Макроскопически кварц остается совершенно однородным, повышение точности термостатирования только улучшает выявление этого смежного состояния.  [c.175]

Молекулярные кристаллы, помимо инертных газов, встречаются у элементов V, VI, VII групп. За исключением металлического полония и полуметаллических сурьмы и висмута, в этих элементах атомы связаны ковалентными силами в молекулы, которые в свою очередь связаны ван-дер-ваальсовыми силами. В итоге связь оказывается смешанной, ковалентно-молекулярной.  [c.113]

Указанные типы дислокаций являются предельными, поскольку предельными (О и я/2) будут углы между векторами Бюргерса и осями дислокаций. Помимо них встречаются промежуточные случаи взаимной ориентации вектора Бюргерса и оси дислокации. Их часто называют смешанными и нередко рассматривают как наложение краевой с вектором Бюргерса 6x=bsina и винтовой с ЬК = 6 os а дислокаций (а — угол между Ь и осью дислокации). Угол а не обязательно постоянен вдоль дислокации, поскольку дислокации могут быть и криволинейными. Однако величина относительного смещения двух частей кристалла неизменна, и поэтому вектор Бюргерса по всей длине любой дислокации остается постоянным. Дислокационные линии могут заканчиваться на поверхности кристалла, границах зерен, других дислокациях, могут образовывать замкнутые петли. Дислокационные линии в виде замкнутой петли называют дислокационной петлей. Характерная особенность — отсутствие точек выхода на поверхность. Такие дислокации возникают, например, за счет схлопывания плоских скоплений вакансий и т. п. Дислокационные петли широко распространены в материалах, подвергнутых радиационному воздействию,] поскольку при бомбардировке кристалла нейтронами или заряженными частицами часть атомов оказывается выбитой из своих мест, в связи с чем возникают вакансии (и межузельные атомы). Одиночные  [c.239]

В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе USO4. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале.  [c.92]

Энергетические зоны отделены друг от друга областями запрещенных энергий — запрещенными зонами Eg (рис. 5.2, а). В качестве примера на рис. 5.3 приведены энергетические зоны лития, бериллия и химических элементов с решеткой типа алмаза (алмаз, кремний и германий). В кристалле лития уровень Is расщеплен слаио, уровень 2s — сильнее, образуя достаточно широкую энергетическую зону 2s. В кристалле бериллия зоны 2s и 2р перекрываются друг с другом, образуя смешанную, так называемую гибридную, зону. В кристаллах с решеткой типа алмаза образование энергетических зон происходит несколько иначе (рис. 5.3, в). Здесь зоны, возникающие из уровней s и р, перекрываясь, разделяются на две зоны так, что в каждой из них содержится по 4 состояния одно s-состояние и три / -состояния. Эти зоны разделены запрещенной зоной Eg. Нижнюю разрешенную зону называют валентной, верхнюю—зоной проводимости.  [c.146]

Э. Л. Андроникашвили и др. [32] проводили исследование влияния облучения в реакторе на структуру и твердость щелочно-галоидных кристаллов. Сравнение микрофотографий поверхностей необлученных и облученных половинок кристаллов КС1 и LiF показало, что облучение в реакторе смешанным нейтронным и 7-излучением вызвало возникновение  [c.239]

Для исследования применяли цилиндрические образцы диаметром 5 10 м и длиной рабочей части 15 10 м. Для удобства наблюдения за развитием рельефа скольжения, проведения ренгенографи-ческого и электронно-микроскопического исследования рабочие части образцов имели продольные площадки шириной 3 мм, параллельные кристаллографической плоскости 110 . Наклепанный после механической обработки поверхностный слой толщиной 0,5 10 м удаляли электрополировкой. В исходном состоянии монокристаллы содержали вытянутые в направлении оси роста субзерна длиной 2—5 мм, разориентировапные на углы от 4 до 90.... Субграницы в кристаллах были смешанного типа с преобладанием компоненты наклона.  [c.154]


В основе фосфатирования стальных изделий лежит процесс образования нерастворимых в воде двух- и трехзамещенных фосфатов железа, цинка и марганца, которые образуются при погружении изделий в разбавленный раствор фосфорной кислоты с добавкой одно-замещенных фосфатов вышеперечисленных металлов. В начальной стадии процесса на поверхности стального предмета образуется тонкий слой фосфорнокислого железа, при дальнейшем протекании процесса образуются смешанные кристаллы фосфатов железа, цинка и марганца. Получающееся фосфатное покрытие хорошо сцеплено с металлической основой. Однако оно имеет характерную высокую по-,ристость и не может обеспечить защиту изделия от коррозии. Его либо дополнительно обрабатывают (например, пропитывая минеральным или растительным маслом), либо используют в качестве предва-фительного покрытия перед нанесением лакокрасочных материалов, что приводит к повышению сцепления данных материалов с основой.  [c.157]

Минералогический просмотр сульфидных минералов после электроимпульсного измельчения позволил обнаружить на их поверхности пленки, примазки и т.д. Рентгенофазовый анализ препаратов, приготовленных из пленок, снятых с кристаллов галенита, идентифицирует их как смешанные соединения Pb0-PbSO4, а для халькопирита - РегОз, FeO, СиСОз Си(ОН)г. На примере ильменита показано, что при электроимпульсном измельчении протекают окислительные реакции, для развития которых требуются более высокие температуры, чем для сульфидов /126/. При электроимпульсном измельчении мономинеральных проб ильменита наблюдается его окисление с образованием самостоятельных окислов титана (брукит, анатаз) и железа.  [c.208]

При вытяжке изменяется форма первичных кристаллов слитка и создаётся волокнистая структура (волокно) в направлении вытяжки, в первую очередь — в зоне с зернистой структурой, затем в зоне смешанной структуры и путано-дендритной и в последнюю очередь — в зоне с крупными столбчатыми (ше-стоватыми) дендритами. Поэтому при известных степенях деформации кованый металл может иметь неоднородное строение в периферийной зоне сечения слабо прокованного металла могут обнаруживаться не ориентированные в направлении течения кристаллы, а в сердцевине сечения после сравнительно небольшой степени деформации металл может приобретать волокнистое строение.  [c.282]

Д. с., Б Л и БТ характеризуют топологически устойчивые типы распределения намагниченности в окрест-пости соответствующих плоскостей, линий и точек кристалла. Переход от этих неоднородных распределений к однородному требует затраты энергии, пропорциональной соответственно объёму, поверхности или линейному размеру тела. По этой причине Д. с. пе могут обрываться внутри тела. Они либо рассекают образец по пек-рой поверхности, либо образуют цилпнд-рич. поверхность перем. сечения, выходящую торцами на поверхность образца (см., напр., Цилиндрические магнитные домены), либо образуют замкнутую поверхность внутри тела. В ряде ферромагн. материалов (напр., в плёнках определ. толщины) реализуются Д. с. смешанной блоховско-ыеелевской структуры (т. н. стенки с поперечными связями).  [c.9]

В монокристаллах С. з. зависит от направления распространения волны в кристалле (см. КристОлло-акустика). В тех направлениях, в к-рых возможно распространение чисто продольных и чисто поперечных волн, в общем случае имеется одно значение С и два значения С(. Если значения различны, то соответствующие волны иногда наз. быстрой и медленной поперечными волнами. В общем случае для каждого направления распространения Ьолны в кристалле могут существовать три смешанные волны с разными скоростями распространения, к-рые определяются соответстВуй-щими комбинациями модулей упругости, причёмйвкто-рн колебат. смещений частиц в этих трёх волнах взаимно перпендикулярны. В табл. 4 приведены Значения С. 3. для нек-рых монокристаллов в характерных направлениях.  [c.547]

При объемной или смешанной кристаллизации электролитов накипеобразование в значительной мере происходит за счет кристаллов, приносимых к поверхности из объема раствора. Кристаллы электролитов и их конгломераты в растворах можно рассматривать как электронейтральные частицы. Однако ДЭС любой поверхности, когда он имеет те же ионы, что и приблизившийся к нему кристалл, не является для последнего ионным барьером и обеспечивает ему прочную связь с поверхностью нагрева. Паровые пузыри не разрушают эту связь и стимулируют накипеобразование. Если ДЭС поверхности нагрева состоит из других ионов, чем кристаллы электролитов в объеме раствора (многокомпонентная среда), последние отлагаются в накипь так, как это типично для электронейтральных взвесей. ДЭС катодного зерна металлической поверхности во многих случаях может оставаться без изменений. Для приведенного на рис. 1 случая такое может иметь место, если количество КС1 в растворе меньше предела растворимости этой соли. После образования на соседних анодных зернах кристаллической структуры, катодные зерна и их ДЭС оказываются ниже твердой поверхности (рис. 3, а), что в общем плане выглядит как нарушение кристаллической структуры поверхности. Известно, что дислокации, а вернее, сопутствующие им терассы и ступеньки на грани кристаллов, способствуют росту последних при ничтожном пересыщении.  [c.59]

Смешанная кремнеториевая присадка в вольфраме ВМ (0,25% Si02, 0,25 % K l, 0,25% ThO) содействует образованию при рекристаллизации длинных, прочно соединенных кристаллов. Вольфрам ВМ отличается механической прочностью и хорошей формоустойчивостью при температурах ниже 2400 К-  [c.35]

Химическая связь в Ш-нитридах имеет смешанный ионно-ковалентный тип. Эффекты зарядовой поляризации (в направлении М Н, где М = В, А1, Оа, 1п), обеспечиваюпще ионную составляющую связи, можно проследить на рис. 1.4, где приводятся контуры распределения зарядовой плотности (р) вдоль линии связи М— X, а также карты изоэлектронных контуров в хг-плоскости кристаллов. Общее представление о характере изменения ионности связи в ряду BN —> АЫ -> GaN 1п позволяют составить данные  [c.14]

Одной из первых попыток оценить энергетический эффект формирования смешанных (вюртцит/сфалерит) нитридов А1, Ga, In явились расчеты [26] в рамках одномерной модели типа Изинга [27], где энергетические параметры заимствовались из зонных расчетов идеальных кристаллов (глава 1).  [c.35]

При нагреве аморфные сплавы кристаллизуются при определенной температуре и (хотя в результате кристаллизации образуются равновесные фазы) процесс кристаллизации крайне сложен и, по всей вероятности, в ходе него происходит также выделение нескольких метастабильных фаз. Масумото с сотр. [10] на основе данных изучения кристаллизации нескольких аморфных сплавов предложили схему процесса кристаллизации, показан-рую на рис. 4.15. При нагреве закаленных аморфных сплавов протекают следующие процессы сначала в аморфной фазе выделяется высокодисперсная метастабильная фаза Л15-1, затем такая смешанная структура полностью переходит в кристаллическую ме-тастабильную фазу AIS-II, которая и превращается при высоких температурах в стабильную равновесную структуру. Фаза Л15-1 представляет собой мелкие кристаллы основного металла. Образующаяся из нее фаза AIS-II вследствие неравномерности зарождения растет очень быстро, в результате чего аморфная матрица полностью изчезает. Структура этой фазы в случае низкой температуры образования однородна, а в случае высокой температуры представляет собой структуру типа эвтектоидной. Кроме того, при длительном отжиге при низких температурах образуется микрокристаллическая фаза SkS, представляющая собой пересыщенный раствор металлоида в основном металле. На рис. 4.16 процесс кристаллизации показан на ТТТ-диаграмме. Согласно Масумото и Мад-дину [2], при отжиге ниже определенной температуры в аморфной фазе возникают в большом количестве мельчайшие кластеры (30—  [c.116]



Смотреть страницы где упоминается термин Кристаллы смешанные : [c.1160]    [c.106]    [c.238]    [c.479]    [c.26]    [c.52]    [c.35]    [c.6]    [c.25]    [c.80]    [c.89]    [c.65]    [c.35]    [c.19]    [c.22]    [c.309]    [c.444]    [c.680]    [c.75]   
Физико-химическая кристаллография (1972) -- [ c.16 , c.90 , c.135 , c.475 ]

Техническая энциклопедия Том19 (1934) -- [ c.179 ]



ПОИСК



I смешанные

Дефекты в кристаллах смешанные, Френкеля и Шоттки

Дефекты в кристаллах термодинамика точечных дефектов (Френкеля, Шоттки или смешанных)

Кристаллы ложные 507, XVIII кристаллы смешанные 179, XIX

Кристаллы ложные кристаллы смешанные

Образование смешанных кристаллов в сплавах

Смешанные кристаллы с адсорбционным слоем



© 2025 Mash-xxl.info Реклама на сайте