Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Повышение точности при автоматизированной обработке

ПОВЫШЕНИЕ ТОЧНОСТИ ПРИ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКЕ  [c.368]

Повышение точности при автоматизированной обработке. Вопросы точности при автоматизированной обработке приобретают  [c.164]

С использованием размерного анализа представляется возможность рассчитать требуемую частоту компенсации размерного износа режущего инструмента, обосновать применение автоматической очистки конуса шпинделя оправкой с замшевыми прокладками, использование контактной головки в конкретном случае. Таким образом, размерный анализ технологического процесса в автоматизированном производстве позволяет обосновать применение необходимых средств повышения точности при автоматическом получении размера, а также определить требования к точности и режим использования этих средств, например определить требуемую точность компенсации размерного износа, диапазон компенсации, частоту измерения (перед каждым рабочим ходом или после обработку определенного числа заготовок в партии) и т.д. Таким образом, размерный анализ технологического процесса позволяет обосновать требования к средствам автоматизации для обеспечения требуемых размеров изделия.  [c.94]


С целью повышения точности обработки и сокращения времени на измерение в производстве все больше применяют специальные автоматизированные устройства для непосредственного измерения деталей в процессе их обработки на станке. При достижении необходимого размера детали измерительный прибор выключает механизм подачи станка. Такие устройства дают возможность автоматизировать измерения и работу станка.  [c.51]

Как показал анализ, одним из наиболее трудоемких является исследование процессов, протекающих при резании материалов. При подобных исследованиях значительное сокращение, времени может быть получено за счет применения автоматизированной исследовательской аппаратуры, обрабатывающей информацию по мере поступления ее от датчиков. В этом случае кроме повышения точности вследствие исключения субъективных факторов и увеличения скорости обработки достигается совмещение процессов обработки данных и работы исследуемой установки.  [c.283]

Решая проблемы повышения точности обработки в условиях автоматизированного производства, надо иметь в виду, что постоянные систематические погрешности (например неточности изготовления элементов станка) в большинстве Лучаев компенсируются при наладке оборудования. Переменные систематические погрешности (тепловые деформа ции станка во времени, размерный износ режущего инструмента и т, п,), удельный вес которых особенно велик, а также частично случайные погрешности необходимо устранять в процессе обработки.  [c.140]

Для автоматизированного производства характерно более полное выполнение принципа постоянства баз, что способствует не только повышению точности, но и унификации приспособлений на различных операциях обработки. Обращается большее внимание на повышение износостойкости приспособлений и очистку их от стружки и посторонних частиц. Для закрепления заготовок широко используются пневматические, гидравлические и другие силовые приводы. В случае обработки деталей в приспособлениях-спутниках закрепление осуществляют механическими устройствами, однако в качестве источника силы стараются использовать не мускульную энергию рабочего, а те же силовые приводы. При передаче приспособлений-спутников с последней на исходную позицию их пропускают через устройства для очистки от стружки.  [c.369]

Резюмируя сказанное, можно заключить, что повышение точности автоматизированной обработки достигается в основном теми же путями, что и при обработке на обычных станках методом автоматического получения размеров. Наряду с этим отдельные виды погрешностей могут быть устранены средствами активного контроля, регулирующими процесс обработки. Для процессов достаточно стабильных и хорошо изученных могут быть рекомендованы активные средства контроля с автоматическими подналадчиками, включаемыми через определенные интервалы времени. Этим методом могут устраняться систематические закономерно изменяющиеся погрешности  [c.371]


Проблема повышения точности обработки, особенно для условий функционирования автоматизированных комплексов по обработке массовых деталей, сохраняет свою высокую актуальность и при дальнейшем совершенствовании обработки методом хонингования. Эта проблема имеет комплексный характер, и ее разработка связана с поисками новых прогрессивных схем хонингования, прогрессивной оснастки и дальнейшего совершенствования кинематики и конструкции хонинговальных станков.  [c.27]

Задачу повышения точности можно разбить на общую и частные. Общая задача повышения точности одновременно решается для всех отраслей машиностроения вследствие непрерывного развития производственной техники и технологии машиностроения в целом. Результаты научных исследований и достижений передовых заводов используют остальные предприятия машиностроения. Частные задачи носят конкретный характер. Они решаются в каждом отдельном случае при проектировании технологических процессов, их внедрении и отладке. Эти задачи всегда актуальны, но их постановка, содержание и методы решения видоизменяются в зависимости от условий производства. Задачи повышения и технологического обеспечения точности более актуальны в поточно-массовом, нежели в единичном и серийном производстве еще большее значение они имеют в автоматизированном производстве, где заданная точность должна обеспечиваться надежной и устойчивой работой технологического оборудования. Актуальна задача управления точностью. Она должна решаться выполнением расчетов точности при проектировании технологических процессов, установлением регламентов на оборудование и оснастку и определением условий работы с минимальной подналадкой станков. Целесообразна разработка адаптивных систем, повышающих точность, производительность и экономичность обработки.  [c.108]

Советскими технологами-машиностроителями проделана большая работа по развитию производства машин различного назначения, а советскими учеными внесен значительный вклад в развитие и формирование технологической науки. Непрерывный рост отечественного машиностроения ставит перед технологами ряд дальнейших актуальных задач совершенствования заготовительных процессов для максимального приближения формы заготовок к конфигурации готовых деталей, повышения точности заготовок и улучшения качества их поверхностного слоя. От решения этих задач зависят расход материала на производимую продукцию, качество изготовленных деталей, количество брака в производстве, трудоемкость, себестоимость последующей обработки резанием и возможность ее автоматизации, длительность цикла изготовления машины в целом, а также ее себестоимость. Коэффициент использования материала при обработке деталей машин сравнительно невысок в массовом производстве он равен 0,85 в серийном 0,7, а в единичном (включая тяжелое машиностроение) 0,5—0,6. Общий коэффициент использования материала, определяемый отношением массы детали к массе исходного материала, из которого выполняется заготовка (слиток, прокат для горячей штамповки), еще более низок (0,3—0,4). Ежегодные потери металла в стружку еще велики. При дальнейшем росте машиностроения они должны быть сокращены путем перехода на более прогрессивные виды заготовок. Заданное качество машин обеспечивается не только в сфере механосборочного производства. Его основы закладываются в заготовительных цехах. Для повышения качества деталей необходимо улучшать характеристики заготовок по всем качественным показателям (точность, износостойкость, структура, повышение статической усталостной прочности, устранение остаточных напряжений и др.), а также стабилизировать их, что важно для условий автоматизированного производства. Относительная трудоемкость основных этапов производственного процесса в машиностроении непрерывно перераспределяется. Трудоемкость сборки, имеющая тенденцию к дальнейшему росту, составляет 25—30% трудоемкость обработки резанием достигает 40—50%, а возрастающая трудоемкость заготовительных процессов 20—25%.  [c.410]

В условиях автоматизированного производства к точности механической обработки предъявляются более высокие тре бования. Важнейшим из них является стабильность точности обработки во времени, достигаемая при тщательном учете всех факторов, влияющих на технологический процесс, и создании систем автоматического управления с автоматическими регулирующими устройствами. Погрешности обработки, вызываемые упругими деформациями системы СПИД в результате нестабильности силы резания, могут быть значительно уменьшены за счет повышения и выравнивания жесткости системы СПИД, повышения точности заготовок с однородными механическими свойствами материала, уменьшения допустимой величины износа режущего инструмента.  [c.92]


Для повышения точности обработки в условиях автоматизированного производства необходимо постоянные систематические погрешности устранять при наладке оборудования, а переменные систематические погрешности и частично случайные погрешности — в процессе обработки средствами активного контроля. Применение периодически включаемых автоматических подналадчиков оправдывает себя при наличии стабильных технологических процессов.  [c.92]

В условиях мелкосерийного и единичного производства высокопроизводительные станки-автоматы и полуавтоматы малоэффективны, поскольку требуют больших затрат времени и средств на наладку. Создание станков с ЧПУ открыло период автоматизации металлообработки в мелкосерийном производстве. Необходимость автоматизации металлообработки с технологической и организационной точки зрения на основе применения оборудования с программным управлением можно обосновать следующими факто-pa И. высокой производительностью при обработке деталей сложной формы в результате автоматизации цикла обработки возможностью быстрой переналадки станков в условиях частой смены обрабатываемых деталей возможностью обработки деталей без изготовления дорогостоящей оснастки с обеспечением высокой точности формы и размеров повышением качества обрабатываемых деталей и сокращением брака примерно до 1% применением при обработке деталей оптимальных режимов резания сокращением сроков подготовки и освоения выпуска новых изделий в 5—10 раз повышением стабильности и точности обработки в 2—3 раза при одновременном сокращении числа и стоимости слесарно-доводочных и сборочных операций возможностью организации многостаночного обслуживания высвобождением высококвалифицированных рабочих-станочников возможностью повышения коэффициента технического использования и лучшего использования по времени возможностью автоматизации металлообработки в единичном и мелкосерийном производстве возможностью создания автоматизированных участков группового управления с помощью ЭВМ и интегральных автоматических систем управления технологическими процессами.  [c.306]

Экономический эффект от внедрения автоматизированных комплексов может быть получен в результате повышения качества выпускаемой продукции вследствие увеличения точности обработки и снижения процента брака снижения трудоемкости выпускаемой продукции повышения производительности основных рабочих из-за сокращения потери рабочего времени экономии металла за счет улучшения качества заготовок сокращения цикла производства и уменьшения объемов незавершенного производства снижения себестоимости при условно-постоянных расходах при росте объема производства экономии производственной площади снижении капиталовложений в результате лучшего использования оборудования. Кроме того, рассчитывается экономический эффект от решения социальных задач в связи с сокращением травматизма и заболеваемости, снижением текучести рабочей силы.  [c.534]

Для облегчения практического использования возможностей быстрого подбора оптимальных режимов обработки в производственных условиях разработаны специальные номограммы, дающие возможность увязывать выбор режимов резания с чистотой, точностью, производительностью и себестоимостью обработки они же служат основой при расчете точности обработки на станках. Номограммы позволяют снизить до минимума простои оборудования в автоматизированном производстве, вызываемые подналадкой и заменой изношенного инструмента, и крайне необходимы при проектировании автоматических линий, где скорости рабочих движений, как правило, устанавливаются неизменными. Номограммы наглядно показывают, что при соблюдении постоянства оптимальной температуры резания повышение подачи в диапазоне, характерном для чистового и тонкого точения всегда повышает не только производительность обработки, но и размерную стойкость инструмента.  [c.256]

При обработке деталей сложной конфигурации и прутков, при большой программе выпуска и повышенных требованиях к качеству шлифования, целесообразным является применение специальных автоматизированных станков, изготовляемых только для обработки изделий одного вида. Специальные станки оснащают транспортно-загрузочны-ми устройствами, устройствами правки шлифовального круга алмазными роликами, ведущего круга - единичным алмазом или другими узлами и системами, позволяющими свести до минимума вспомогательное время, повысить производительность и точность шлифования.  [c.19]

Существенно увеличивающийся уровень автоматизации производства в машиностроении, использование станков-автоматов, агрегатных станков, автоматических линий, станков с программным управлением требует обеспечения производства этого оборудования инструментом, находящимся на принципиально новом качественном уровне. В этом отношении представляет интерес опыт Волжского автомобильного завода. Внедрение новых технологических процессов автоматизированной обработки деталей с ис-пользоваршем прогрессивных конструкций инструмента и только из новых инструментальных материалов высокого качества (твердых сплавов, быстрорежущей стали и минералокерамики) обеспечило сокращение трудоемкости изготовления автомобиля до 2 раз по сравнению с другими ведущими автомобильными заводами при одновременном повышении качества и точности основных деталей не менее чем на один класс.  [c.313]

Повышение точности обусловливается непрерывным ростом требований к новым машинам, а также тем, что основной объем механической обработки перемещается в область отделочных операций в связи с совершенствованием технологии изготовления заготовок. Точность повышается при увеличении и выравнивании жесткости технологической системы уменьшении размерного износа режущих инструментов сокращении погрешностей настройки технологической системы, уменьшении ее тепловых деформаций создании адаптивных и самооптимизирующих систем управления точностью, а также установлении рациональных требований к точности станка и режущего инструмента. В каждом отдельном случае необходимо проанализировать возможности уменьшения первичных погрешностей обработки и определить суммарную погрешность. Развитие и совершенствование подобных расчетов важно в поточном и автоматизированном производстве для обоснования технологических решений, установления оптимальных допусков на промежуточные размеры заготовок и управления точностью.  [c.411]


Анализ существующих экспериментальных возможностей 17, 8] показывает, что для измерений полей циклических деформаций в зонах концентрации при повышенных температурах наиболее удобен способ, базирующийся на использовании эффекта возникновения картин муаровых полос и методах автоматизированной цифровой обработки изображений [9]. Разработанная математическая модель, описывающая формирование муаровой картины при наложении эталонного и рабочего растров, устанавливает взаимосвязь между полем смещений нанесенного на исследуемую поверхность растра и полем освещенности результирующей картины муаровых полос. При этом в отличие от традиционного способа измерения перемещений в геометрических местах наибольшего или наименьшего почернения муаровой картины определяют массивы перемещений по дробным порядкам градациям освещенности) муаровых полос, т. е. фактически осуществляют разбиение полосы на множество (до 10 ) подполос. Зто существенно увеличивает чувствительность и точность метода муаровых полос при измерениях деформаций элементов листовых конструкций в услових циклических нагружений при повышенных температурах. Проведенные с применением такого метода измерения полей деформаций (в диапазоне 1-10 — 2-10 с величиной погрешности 3—5%) на образцах из сплава АК4-ГТ1, моделирующих элемент панели планера, показали, что в диапазоне температур I = 120 215° С, номинальных напряжений сг =  [c.114]

Разработанные комбинированные схемы насыщения требуют позонного потенциала, пониженного или повышенного в зависимости от требований технологии. Следовательно, основное преимущество автономной схемы питания термического оборудования контролируемыми атмосферами — высокая точность состава подаваемой атмосферы и возможность ее регулирования — либо теряется, либо требует автономного питания уже в каждой зоне, что экономически может оправдываться только в специальных условиях мелкосерийного или индивидуального производства. Вместе с тем разработка многозонных печей с типовыми зонами по углеродному потенциалу в условиях крупносерийного и массового производства в автомобильной промышленности оправдывает двухпотенциальную нли даже трехпотенциальную кольцевую систему питания. Это необходимо учитывать при проектировании нового или реконструкции действующего производства. В условиях изменения производственных процессов единая централизованная система питания из кольца может быть дополнена добавлением к газу-иосителю углеводородных, азотсодержащих или окислительных газов в требуемые зоны соответствующих автоматизированных линий термической обработки тоже по индивидуальным централизованным системам питания. Основные характеристики генераторов, целесообразных для питания в кольцевой системе и создающих эндотермическую или экзо-эндотермическую атмосферы, приведены в гл. 6.  [c.526]


Смотреть страницы где упоминается термин Повышение точности при автоматизированной обработке : [c.83]    [c.137]    [c.32]   
Смотреть главы в:

Точность механической обработки  -> Повышение точности при автоматизированной обработке



ПОИСК



Обработка Точность обработки



© 2025 Mash-xxl.info Реклама на сайте