Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные виды движения жидкости

Переменные Лагранжа и Эйлера. Возможны два основных вида движения жидкости или газа установившееся и неустановившееся. Если в любой точке пространства давление, плотность, модуль и направление скорости частиц движуш,ейся среды во времени не изменяются, то такое движение жидкости или газа называется установившимся. Если эти параметры потока в данной точке изменяются во времени, то такое движение называется неустановившимся. Существует два метода описания движения жидкостей и газов, использующие переменные Лагранжа или переменные Эйлера. Метод Лагранжа позволяет изучить движение каждой индивидуальной частицы сплошной среды метод Эйлера позволяет изучить изменение параметров движущейся среды (давление, плотность, скорость) в данной точке пространства без исследования поведения каждой индивидуальной частицы в отдельности.  [c.230]


ТРИ ОСНОВНЫХ ВИДА ДВИЖЕНИЯ ЖИДКОСТИ.  [c.77]

Три основных вида движения жидкости.  [c.60]

ВИДЫ ДВИЖЕНИЯ жидкости и ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДВИЖЕНИЯ  [c.23]

Основные понятия гидродинамики и виды движения жидкости  [c.29]

Гидравлика обычно изучает реальные (вязкие) жидкости. Но из-за сложности учета сил трения, которые оказывают существенное влияние на движение жидкости, изучение гидродинамики начинают с рассмотрения идеальной, т. е. невязкой жидкости. Полученные уравнения движения идеальной жидкости корректируются введением соответствующих поправок и эмпирических коэффициентов для учета сил трения реальных жидкостей. Определение указанных зависимостей (3.1) и установление взаимосвязи между ними при разных видах движения жидкости и составляет основную задачу гидродинамики.  [c.45]

В технике большое практическое значение имеет конвективный теплообмен в пучках труб при расположении их перпендикулярно движению жидкости. Применяют в основном два вида расположе-  [c.433]

Математическая постановка и решение задачи о движении несферического пузырька газа в жидкости могут быть осуществ-.лены для случая слабодеформированного пузырька. Сформулируем основные предположения. Будем считать, что Re 1, т. е. течение жидкости является ползущим . Пузырек газа свободно всплывает в жидкости под действием силы тяжести с постоянной скоростью и. Поместим начало координат в центр массы пузырька. Течение жидкости и газа будем считать осесимметричным. Уравнения движения жидкости вне пузырька и газа внутри пузырька будут иметь вид (2. 2. 7). Слабая деформация пузырька может быть описана при помощи малой безразмерной величины С ( os 0), так что уравнение формы поверхности примет вид  [c.65]

Свободная поверхность жидкости, находящейся в равновесии D поле тяжести, — плоская. Если под влиянием какого-либо внешнего воздействия поверхность жидкости в каком-нибудь месте выводится из ее равновесного положения, то в жидкости возникает движение. Это движение будет распространяться вдоль всей поверхности жидкости в виде волн, называемых гравитационными, поскольку они обусловливаются действием поля тяжести. Гравитационные волны происходят в основном на поверхности жидкости, захватывая внутренние ее слои тем меньше, чем глубже эти слои расположены.  [c.55]


Представление о двух видах движения дает простое объяснение наблюдающимся на опыте основным свойствам течения гелия II. Отсутствие вязкости при протекании гелия II по узкой щели объясняется тем, что в щели имеет место сверхтекучее движение жидкости, не обнаруживающее трения можно сказать, что нормальная часть, задерживается в сосуде, протекая через щель несравненно медленнее, со скоростью, соответствующей ее вязкости и ширине щели. Напротив, измерение вязкости гелия II  [c.707]

ОСНОВНЫЕ ВИДЫ УСТАНОВИВШЕГОСЯ ДВИЖЕНИЯ ЖИДКОСТИ В ОТКРЫТОМ РУСЛЕ  [c.154]

Основными силами, определяющими гидроаэродинамические процессы, являются силы тяжести (объемная сила), силы трения и силы упругости. Рассмотрим случа) , когда решающее значение имеют силы трения, а силы тяжести и силы упругости по сравнению с ними малы так, что ими можно пренебречь. Это характерно, например, для напорного движения жидкости в горизонтальном трубопроводе. Силы трения можно представить в виде  [c.311]

Движение жидкости в пограничном слое описывается уравнением (11.12) при условии (11.14) и, кроме того, уравнением неразрывности. Последнее в случае несжимаемой жидкости, которая в основном только и рассматривается, имеет вид  [c.371]

Установившееся движение является основным видом при гидравлических расчетах, поэтому в данном курсе будут изучаться закономерности изменения параметров при этом движении жидкости.  [c.37]

Уравнение Бернулли является основным уравнением гидравлики, на базе которого выводятся расчетные формулы для различных случаев движения жидкости и решаются многие практические задачи. При этом нужно иметь в виду, что оно в виде (4.31)—(4.34) справедливо только для установившихся потоков с плоскими живыми сечениями.  [c.57]

Одной из основных в гидромеханике является модель несжимаемой идеальной (или невязкой) жидкости. Так называется гипотетическая сплошная среда, обладающая текучестью, лишенная вязкости и полностью несжимаемая. Эта модель является объектом исследования в разделе гидромеханики Теория идеальной несжимаемой жидкости . Игнорирование свойств вязкости и сжимаемости сильно упрощает математическое описание движения жидкости и позволяет получить многие решения в конечном замкнутом виде. Несмотря на значительную степень идеализации среды, теория несжимаемой невязкой жидкости дает ряд не только качественно, но и количественно подтверждаемых опытом результатов, полезных для практических приложений. Но не менее существенное значение этой теории состоит в том, что она является базой для других моделей, более полно учитывающих свойства реальных сред. Следует, однако, подчеркнуть, что пренебрежение вязкостью является весьма сильной степенью идеализации, поэтому теория идеальной несжимаемой жидкости может приводить к результатам, резко расходящимся с опытом.  [c.24]

Наряду с этим следует особо подчеркнуть, что капельные жидкости оказывают существенное сопротивление сдвигающим силам, которое проявляется при движении жидкости в виде сил внутреннего трения правильный учет этих сил внутреннего трения при движении жидкости является одной из основных задач гидравлики.  [c.8]

Как уже отмечалось, член в уравнении (3.24) учитывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений  [c.79]

Исследованию местных сопротивлений посвящено большое число работ, в основном экспериментальных. В результате этих работ установлено, что коэффициент местного сопротивления зависит не только от вида самого местного сопротивления, но и от характера режима движения жидкости, т. е. от числа Рейнольдса.  [c.161]

Простым трубопроводом называется трубопровод, не имеющий разветвлений на пути движения жидкости от точки забора до точки потребления, сложным — трубопровод, представляющий собой сеть труб, состоящую из основной магистральной трубы и ряда отходящих от нее ответвлений. Сложные трубопроводы делятся на следующие основные виды  [c.217]


Уравнение движения жидкости в гидродинамической передаче принципиально не отличается от основных уравнений лопастных машин (см. 59). В насосе гидропередачи момент количества движения жидкости увеличивается, и поэтому крутящий момент на валу насосного колеса определяется по уравнению (362). В турбине момент количества движения жидкости, протекающей через колесо, уменьшается, обусловливая появление вращающего момента турбины, величина которого определяется по уравнению (363). При отсутствии трения жидкости и передачи энергии уравнения (362) и (363) принимают вид  [c.294]

Основные виды установившегося движения жидкости в призматическом открытом русле  [c.6]

Основному уравнению равномерного движения жидкости в трубопроводах можно придать также другой вид. Для этого выделим в трубопроводе сечениями /—I и 2—2 соосный цилиндр радиусом а и длиной / (рис. 4.10). Так как распределение скоростей в обоих сечениях по предположению одинаково, то частицы жидкости, переходя от первого сечения ко второму, не испытывают ускорения. Поэтому можно считать, что силы, приложенные к цилиндру, находятся в равновесии. Уравнение  [c.157]

Турбулентное течение— это течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. Движение отдельных частиц оказывается неупорядоченным, траектории подчас имеют вид замысловатых кривых. Объясняется это тем, что при турбулентном течении наряду с основным продольным перемещением жидкости по руслу имеют место поперечные перемещения и вращательное движение отдельных объемов жидкости. Поперечные движения создают обмен импульсами между соседними слоями. Это приводит к тому, что распределение скоростей по поперечному сечению трубы  [c.49]

При неустановившемся движении жидкости в трубопроводе могут быть поставлены те же задачи на его расчет, что и при установившемся, однако чаще всего на практике приходится решать задачи первого или второго типа. Для простого трубопровода задача расчета сводится к одному обыкновенному дифференциальному уравнению, как правило, не сводящемуся к квадратурам или системе из двух уравнений. Для численного решения этой задачи можно воспользоваться известными из курса математики методами Эйлера или Рун-ге — Кутта. Последний метод обычно реализуется в математическом обеспечении машины в качестве стандартной программы. При проведении гидравлических расчетов трубопроводов на ЭВМ, особенно для неустановившихся течений жидкости, расчетное уравнение целесообразно привести к безразмерному виду, чтобы основные слагаемые имели порядок величины, равный единице. При таком подходе существенно уменьшается вероятность получения в процессе вычислений машинного нуля или переполнения.  [c.138]

Основные виды движения. Расход жидкости. Движение может быть равномерным и неравном1фным, сплошным и прерывистым. При равномерном движении величина скорости не меняется по длине струйки, в против ом случае движение называется неравномерным.  [c.65]

Неуотаношшвееоя движение жидкости в настоящее время яв -етоя основным видом движения нефтей и нефтепродуктов по ма-гиотральным трубопроводам. Подробно методы расчета магистральных трубопроводов щш неувтановнвшихоя режимах перекачки изложены в зхЗ.  [c.86]

В разделе гидростатики рассмотрены вопросы гидроста-тического давления, его свойства и измерения, вопросы плавления тел и др. В разделе гидродинамики уделено внимание видам, режимам и основным закономерностям движения жидкости в напорных и безнапорных трубопроводах, каналах и открытых руслах. Изложены основные закономерности движения жидкости в пористой среде. Б разделе насосов приведены сведения о классификации насосов, даны схемы устройства, показаны достоинства и недостатки.  [c.2]

Определения виды движения. Теплообмен между телами происходит в основном при движении рабочих тел около поверхностей, через которые он и осуществляется. Наука о движении рабочих тел называется гидроаэродинамикой. В ней слову жидкость придают расширенное значение, понимая под жидкостью как капельную (несжимаемая жидкость), так и упругую (газ — сжимаемая жидкость). Различают два вида движения жидкости — ламинарное и турбулентное. При ламинарном движении жидкость перемещается спокойно, образуя параллельные неперемешивающиеся струйки. Скорость движения направлена параллельно струйкам жидкости. Ввиду наличия трения, которое имеет наибольшее значение у стенки, скорость имеет меньшее значение вблизи стенки (у самой стенки она равна нулю, и жидкость как бы прилипает к стенке) постепенно к центру скорость увеличивается и по оси трубы имеет наибольшее значение.  [c.51]

Основные закономерности движения жидкости с переменной массой впервые и наиболее полно исследованы нашими советскими учеными В. М. Маккавеевым, И. М. Коноваловым, Я. Т. Ненько, Г. А. Петровым и др. Необходимо отметить важное значение работы И. В, Мещерского [13 и 14] в области теории движения тела переменной массы и, в частности, предложенное им дифференциальное уравнение движения тела с переменной массой. Это уравнение может быть написано в следующем виде  [c.16]

Решение. Выбираем цилиндрические координаты с началом в центре иижней пластинки (которую полагаем неподвижной). Движение жидкости осесимметрично, а ввиду тонкости слоя жидкости в основном радиально (Уг Уг), причем dvrjdr < dvrjdz. Поэтому уравнения движ сиия принимают вид  [c.100]

Структура струи. По исследованиям Г. Н. Абрамовича движение жидкости, образующей струю, можно характеризовать следующим образом (рис. IX.2). В выходном сечении а—б скорости потока во всех точках сечения равны между собой. На протяжении длины L (на так называемом начальном участке) осевая скорость постоянна по величине и равна скорости выходного сечения Vq. В некотором промежуточном сечении п начального участка эпюра скоростей имеет вид, указанный на рис. IX.2. Далее осевая скорость постепенно уменьшается. Участок струи L, на котором осевая скорость t>o начальный участок от основного, переходным. В области треугольника абс (рис. IX.2) во всех точках струи скорости жидкости равны между собой и равны Vq эта область образует так называемое ядро струи. На граничных линиях ON и ON продольные скорости равны нулю эти линии пересекаются на оси в точке О, називаемой полюсом .  [c.135]


Основываясь на некоторых теоретических соображениях (см. далее гл. XVII), а также на результатах опытов, Рейнольдс установил общие условия, при которых возможны существование ламинарного и турбулентного режима движения жидкости и переход от одного режима к другому. Оказалось, что состояние (режим) потока жидкости в трубе зависит от величины безразмерного числа, которое учитывает основные факторы, определяющие это движение среднюю скорость v, диаметр трубы d, плотность жидкости р и ее абсолютную вязкость ц. Это число (позже ему было присвоено название числа Рейнольдса) имеет вид  [c.149]

Скорость течения жидкости вдали от стенок параллельна плоскости ХУ и равна Юд. Примем, для опре,деленности, что направлена вдоль оси ОХ тогда Юд и Яд, которые могут быть названы соответственно скоростью основного потока (или ядра потока) и напряженностью магнитного поля в основном потоке, будут в общем случае являться функциями координаты х. -Полные магнитогидродинамические уравнения движения жидкости в пограничном слое имеют вид  [c.657]

Если скорость движения жидкости больше то ламинарное движение разрушается и переходит в новый вид движения, для которого характерно поперечное относительно основного потока перемещение частиц, что вызывает перемешивание жидкости. Упорядоченное слоистое течение исчезает, переходя в турбулентное. А лекулярное хаотическое движение характерно для ламинарного течения в турбулентном потоке происходит перемешивание макроскопических частиц. Это течение имеет неустановиБшийся характер, при котором скорость и другие параметры в данной точке изменяются во времени. Наличие интенсивного перемешивания потока при турбулентном течении приводит к появлению дополнительных тангенциальных напряжений в жидкости, к более интенсивному переносу в ней вещества и теплоты.  [c.18]

В учебном пособии приводятся основные законы гидростатики, различные слу> чаи гидростатического давления жидкости на плоские и криволинейные поверхности, виды движения подземных вод, основной закон фильтрации, равномерное и неравномерное движение подземных вод рассматриваются вопросы канализации и водопроводных сетей городов, очистка сточных вод, основы технико-вкономнческого сравнения вариантов проектных решений. Даны основы технической эксплуатации систем и сооружений водоснабжения и водоотведения.  [c.2]

В соответствии с проведенным анализом уравнение подобия для теплоотдачи при свободном движении имеет вид Ыи= (ОгРг). Это уравнение можно получить также, используя анализ размерностей. Основные положения конвективного теплообмена (см. гл. 14) позволяют заключить, что средний коэффициент теплоотдачи а при свободном движении жидкости вдоль вертикальной поверхности высотой I зависит от подъемной силы й РОс, вязкости р, теплопроводности К и величины рср — объемной теплоемкости, с которой связан 1сонвективный поток <7к =p pwt. Следовательно, имеем зависимость  [c.396]


Смотреть страницы где упоминается термин Основные виды движения жидкости : [c.806]    [c.152]    [c.152]    [c.27]   
Смотреть главы в:

Справочное пособие по гидравлике гидромашинам и гидроприводам  -> Основные виды движения жидкости



ПОИСК



Виды движения жидкости и основные характеристики движения

Виды жидкостей

Виды основные

Движение — Виды

Основные виды установившегося движения жидкости в открытом русле

Основные виды установившегося движения жидкости в призматическом открытом русле

Основные понятия гидродинамики. Виды движения жидкости

Три основных вида движения жидкости. Понятие вихревого и безвихревого движений



© 2025 Mash-xxl.info Реклама на сайте