Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Значение закона сохранения энергии

Значение закона сохранения энергии  [c.247]

В конце XIX и XX столетиях на Западе предпринимались новые неоднократные попытки подрыва общего значения закона сохранения энергии. Все эти попытки по существу являлись борьбой против материализма. Обострение этой борьбы в конце XIX и начале  [c.391]

ХОДИТ медленное изменение этих величин в соответствии с соотношениями (4.22). Согласно закону сохранения энергии, при любом значении параметров модели выполняется соотнощение  [c.155]


Используя закон сохранения энергии, можно показать, что дополнительная работа внешних сил равна по абсолютному значению дополнительной работе внутренних сил Ш12= Х 12-Действительно, при нагружении системы силой внешние силы совершают работу =/ Д( /2, а внутренние силы совершают работу (см. 57)  [c.183]

Законы сохранения энергии, импульса и момента импульса относятся к числу тех фундаментальных принципов физики, значение которых трудно переоценить. Роль этих законов особенно возросла после того, как выяснилось, что они далеко выходят за рамки механики и представляют собой универсальные законы природы. Во всяком случае, до сих пор не обнаружено ни одного явления, где бы эти законы нарушались. Они безошибочно действуют и в области элементарных частиц, и в области космических объектов, в физике атома и физике твердого тела и являются одними из тех немногих наиболее общих законов, которые лежат в основе современной физики.  [c.64]

Полученное значение h = 6,624-10 - эрг-с находится в отличном согласии с измерениями, основанными на использовании законов фотоэффекта и черного тела. Это иллюстрирует возможность получения существенных результатов из применения закона сохранения энергии для описания элементарных процессов, происходящих при превращениях фотонов.  [c.446]

В этом состоит основное значение понятия о работе и теоремы об изменении кинетической энергии или уравнений живых сил. Уравнение живых сил было известно И. Бернулли, но его глубокое физическое содержание было разъяснено лишь в середине XIX в. вместе с установлением общего закона сохранения энергии. Тогда  [c.384]

Среди физических законов, согласующихся с принципом относительности Галилея, особенное значение имеют законы сохранения импульса, массы и энергии. Эти законы уже знакомы вам по школьному курсу физики, где они формулировались без какой-либо связи с принципом относительности. Согласно закону сохранения энергии, полная энергия Вселенной постоянна, независимо от времени ). Рассматривая эти законы с точки зрения принципа относительности, мы не откроем ничего сверх того, что мы уже знаем. Однако мы выиграем в отношении понимания явлений, и это поможет нам обобщить закон сохранения импульса на релятивистские условия, для которых соотношение F = Afa уже не является точным законом природы. Нашей конечной целью будет нахождение эквивалентов законов сохранения массы, энергии и импульса в условиях движения с релятивистскими скоростями, т. е. со скоростями, сравнимыми со скоростью света с.  [c.88]


Второе затруднение. При -распаде непосредственно наблюдаются лишь выбрасываемые Р -частицы, которые вскоре после открытия радиоактивности были отождествлены с электронами. Эти выбрасываемые р-электроны, как указывалось выше, имеют всевозможные значения энергии от нуля и до Sq- Однако ядро как квантовомеханическая система должно суш,ествовать лишь в определенных энергетических состояниях. Наличие дискретных (линейчатых) спектров а-частиц и 7-квантов указывает на поразительную определенность энергетических состояний ядра. Поэтому каждому переходу ядра из начального (материнского) состояния в некоторое конечное (дочернее) состояние и в процессе Р-распада должно было бы соответствовать вполне определенное изменение энергии. Однако существование сплошного спектра р-частиц по значению энергии противоречит этому выводу. Сплошной характер Р-спектра находится как бы в противоречии с законом сохранения энергии, хотя во всех других ядерных процессах закон сохранения энергии выполняется строго.  [c.237]

Например, в работе [300] скорость трещины, принятая вначале постоянной, после ее определения с использованием критерия разрушения о предельном значении коэффициента интенсивности напряжений и закона сохранения энергии, естественно, оказалось переменной, причем эта скорость более соответствует физическому смыслу задачи, нежели принятая сначала постоянной.  [c.326]

Нетрудно заметить, что при написании этих реакций, кроме законов сохранения барионного и злектрического зарядов, в неявной форме были использованы также и законы сохранения энергии и импульса. Действительно, в правой части всех реакций стоит по одному я-мезону, хотя законы сохранения электрического и барионного зарядов допускают и большее число я-мезо-нов. Это означает, что мы ограничиваемся такими значениями кинетических энергий, при которых в соответствии с законом сохранения энергии возможно рождение только одного я-мезона. Использование закона сохранения импульса очевидно из отсутствия процессов вида  [c.568]

Выясним общие условия равновесия тела или системы тел на основе закона сохранения энергии. Полная механическая энергия системы равна сумме ее кинетической и потенциальной энергий [см. (14.14)] Д = 7 -ЬП. Кинетическая энергия никогда не может принимать отрицательных значений. Если 7 = 0, то это значит, что в данной системе отсчета = П и механическая система неподвижна. При движении механической системы ее полная энергия больше ее потенциальной энергии, т. е. >П.  [c.56]

Значение второго начала. Если исходить из одного лишь первого начала термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе.  [c.43]

Уравнение (9.12) представляет собой общин интеграл уравнений движения идеальной жидкости, выражающий закон сохранения энергии. Это ясно из самого вывода этого уравнения кроме того, в этом можно убедиться и из сопоставления его с уравнением (2.8) первого начала термодинамики. Приращение кинетической энергии жидкости есть располагаемая полезная внешняя работа, которая может быть произведена потоком жидкости над внешним объектом работы согласно уравнению (2.8) полезная внешняя работа равняется убыли энтальпии, что и заключено в уравнении (9.12). Из этого ясно, что уравнение (9.12) справедливо и для теплоизолированного течения с трением, однако только для средних (например, усредненных по сечению канала) значений удельной кинетической энергии и энтальпии, а не иР .  [c.290]

Первое начало термодинамики является термодинамической формой общего закона сохранения энергии (см. п. 5.10). При движениях газов потенциальная энергия h только в редких случаях имеет практическое значение, а потому в дальнейшем не учитывается. Вместо работы dV введем работу dl = —dV, которую газ совершает против внешних поверхностных сил. Тогда вместо выражения (11.2) можно записать  [c.408]

НИТЬ интерференцию взаимодействием различных фотонов (см. 5). В рассматриваемом случае это доказывается уменьшением интенсивности потока фотонов от источника S в интерферометр до столь малых значений, при которых в пределах интерферометра не может находиться в среднем более одного фотона. При этом наблюдаемая интерференционная картина при соответствующем увеличении времени экспозиции не изменяется, являясь доказательством утверждения, что фотон интерферирует сам с собой . При той же малой интенсивности можно убедиться с помощью двух детекторов, включенных в схему совпадений и установленных в соответствующих точках на путях AB D и AB D, что всегда фотон детектируется либо на пути AB D, либо на пути AB D, и никогда на обоих путях одновременно. Общее число фотонов, падающих на пластину А, равно сумме чисел фотонов, детектируемых на пути А В 2D и А В 2D (закон сохранения энергии). Это еще более надежно подтверждает положение, что фотон интерферирует сам с собой .  [c.411]


Весьма просто единственность решения устанавливается в случае динамических задач. Покажем, что решение, удовлетворяющее нулевым начальным условиям и нулевым краевым условиям (в смещениях или напряжениях), есть тождественный нуль. В силу однородности начальных условий смещения тогда являются равными нулю функциями, а тело в начальный момент не деформировано и находится в состоянии покоя. Следовательно, полная энергия обращается в нуль и всегда будет оставаться равной нулю в силу закона сохранения энергии. Кинетическая же энергия и энергия деформации могут принимать лишь неотрицательные значения. Поэтому из условия обращения в нуль полной энергии следует, что кинетическая энергия и энергия деформации обращаются в нуль. Из равенства же нулю кинетической энергии будет следовать равенство нулю производной ди д1. Учитывая же равенство нулю смещений в начальный момент, приходим к утверждению о тождественном равенстве нулю смещений.  [c.253]

Однако определение силы удара Pa i) по формуле (23.1) весьма затруднительно, так как не известно время соударения, т. е. время, в течение которого скорость движущегося тела снижается от своего максимального значения в момент соприкосновения с ударяемым телом (начало удара) до нуля после деформации последнего (конец удара). В связи с указанными трудностями, определяя напряжения в элементах упругих систем, вызываемые действием ударных нагрузок (динамические напряжения), в инженерной практике обычно пользуются так называемым энергетическим методом, основанным на законе сохранения энергии. Согласно этому методу полагают, что при соударении движущихся тел уменьшение запаса кинетической энергии их равно увеличению потенциальной энергии деформации соударяющихся упругих тел.  [c.691]

Подставив найденные значения Ат и Л в (111.45), получим уравнение, выражающее закон сохранения энергии в виде  [c.79]

Внутренняя энергия V обычно измеряется в джоулях (Дж), удельная и — в Дж/кг и является функцией состояния системы. Это вытекает непосредственно из закона сохранения энергии система в каждом своем состоянии имеет только одно значение внутренней энергии. Если бы система имела разные значения внутренней энергии, то можно было бы отнять эту разность, а состояние системы не изменилось, т. е. система служила бы сама источником энергии. Это противоречит закону сохранения энергии, следовательно, энергия системы есть функция состояния, а с1и есть полный ее дифференциал.  [c.10]

На основании закона сохранения энергии потенциальная энергия деформации элементарного параллелепипеда равна работе внешних сил, приложенных к его граням. При вычислении этой работы будем предполагать, что внешние силы (все одновременно) постепенно нарастают от нуля до своего конечного значения, т. е. что эти силы действуют статически.  [c.111]

Здесь стоит вспомнить М. Планка, который в одной из своих работ тоже высказывался о высоком значении закона сохранения энергии и его незыблемости. Планк пнсал Фундамент современного здания точных наук о природе образуют два закона принцип сохранения материи и принцип сохранения энергии . И дальше ...признание принципа сохранения энергии образует единственный общий исходный пункт для всех претендующих на преемственность теорий .  [c.270]

Закон сохранения энергии утверждает, что для системы частиц, взаимодействие между которыми неявно ) зависит от времени, полная энергия системы постоянна (рис. 5.6—5.9). Этот результат мы считаем достоверно установленным экспериментальным фагктом. Если выражаться точнее, то этот закон говорит нам Q Том, что существует некоторая скалярная функция [такая, как функция Mv J2- -Mgx в (13)] положения и скорости частиц, которая не изменяется со временем при условии, что в течение рассматриваемого промежутка времени внешнее взаимодействие явно не изменяется. Например, элементарный заряде не должен изменяться со временем. Помимо функции энергии существуют также и другие функции, которые сохраняют постоянное значение в условиях, о которых только что было сказано. (Другие такие функции мы рассмотрим в гл. 6, в которой речь пойдет о сохранении импульса и момента импульса.) Энергия представляет собой скалярную величину, сохраняющую постоянное значение при движении. Когда мы говорим о внешнем взаимодействии, то имеем в виду, что в течение рассматриваемого  [c.153]

Выход из этого затруднения был найден в 1932 г. Чедвико.м, который проанализировал с помощью законов сохранения энергии и импульса опыты по образованию исследуемым излучением ядер отдачи азота и водорода и пришел к выводу, что это излучение представляет собой поток нейтральных частиц с массой, приблизительно равной массе протона. Вновь открытая частица была названа нейтроном ( ). Точное значение массы нейтрона, определенное из энергетического баланса ядерных реакций, идущих с образованием или поглощением нейтронов, равно гп-п = 1838,5 Же. Таким образом, масса нейтрона больше массы протона на 2,5 гПс и больше суммы масс протона и электрона на 1,5 те. В соответствии с известным соотношением, связывающим массу и энергию, каждому значению массы М в граммах соответствует энергия в эргах, где с = 3 10 ° uj eK — скорость света. Для неподвижной покоящейся частицы эта  [c.19]

Подставив выражения (10.31) и (10.34) в формулу (10.28) и проинтегрировав по всем возможным значениям ре и (они определяются из законов сохранения энергии и импульса при р-распаде), можно получить вероятность излучения и, следовательно, время жизни ядра т относительно р-распада. Оно оказывается связанным с энергией р-раопада соотношением  [c.152]


Наиболее наглядное и убедительное доказательство того, что при взаимодействии а-частицы с ядром азота происходит ядер-ная реакция описанного выше вида, было дано в 1923 г. Блекеттом, который с помощью камеры Вильсона получил фотографию расщепления ядра азота а-частицей. На фотографии отчетливо видны следы первичной а-частицы, вылетающего протона и образующегося ядра. Расчет массы ядра, выполненный с учетом законов сохранения энергии и импульса, дал значение 16,72 0,42 а. е. м.  [c.441]

Эта частица не имеет заряда и поэтому не образует в эмульсии следа (на рисунке ее пугь условно помечен пунктиром). Так как она уносит значительно большую часть энергии, чем зарял<енная вторичная частица, то масса ее должна быть много меньше массы я-мезона. Применяя законы сохранения энергии и импульса к схеме распада л-мезона, можно показать, что масса нейтральной частицы значительно меньше массы электрона. Этой частицей не может быть у-квант, так как в фотоэмульсии нет (е+—е )-пар на пути предполагаемого у-квапта. Позднее мы увидим, что это предположение противоречит также значениям спинов я- и л,-мезонов. Таким образом, распад я-мезона должен быть изображен схемой  [c.133]

Выше были описаны некоторые способы, позволяющ ие найти точное значение масс заряженных частиц. В этих способах используются свойства частиц, обусловленные наличием у них заряда. Но как быть с я°-мезоном, который не имеет заряда В этом случае так же, как при определении точного значения массы нейтрона, были использованы законы сохранения энергии и импульса, с помощью которых проанализировали опыт по изучению взаимодействия я -мезонов с водородом.  [c.150]

Для случая, когда — скорость в перигелии, мы убедились, что орбиты замкнуты при тьУ2 < утМ/г , т, е. при < О, и не замкнуты при тоо/2 >утЛ1/го, т. е. при > 0. Но так как сумма потенциальной и кинетической энергий в силу закона сохранения энергии должна оставаться постоянной, то эта сумма сохраняет свое значение для любой точки орбиты. Если в любой точке орбиты < О — орбита замкнутая, если >0 — незамкнутая ).  [c.326]

Пользуясь понятием о потенциале поля тяготения, вычислим работу, совершаемую под действием поля тяготения при движении материальной точки массы т из точки 1 с потенциалом ф1 в точку 2 с потенциалом ф2. Точка массы т под действием поля тяготения движется в сторону убыли потенциальной энергии. По закону сохранения энергии, совершаемая при этом работа равна уменьшению потенциальной энергии Л1,2 = П1—П2 = —АП. В точке 1 потенциальная энергияП] = т ф1, а в точке 2 она равна П2 = ш ф2. Подставляя эти значения потенциальной энергии, получим  [c.104]

С повышением температуры газа за скачком уплотнения увеличиваются внутренняя и потенциальная энергии газа (или энтальпия i = СрТ). В соответствии с законом сохранения энергии (W2 + i = onst) ее значение за скачком уплотнения не изменяется, что возможно лишь при уменьшении кинетической энергии (1/ 2). Поэтому скорость газа V за скачком всегда уменьшается.  [c.108]

То, что внутренняя энергия есть полный дифференциал, т. е. функция состояния, вытекает из закона сохранения, который утверждает, что южная система в каждом своем состоянии имеет только одно значение внутренней энергии. Если бы это было не так, т. е. система имела бы разные значеиля, то можно было бы отнять эту разность, а состояние системы не изменилось бы, и она могла бы служить источником энергии, не испытывая при этом никаких изменений. Однако это противоречит закону сохранения энергии. Следовательно, остается принять единственное утверждение, что внутренняя энергия есть функция состояния, а для ее элементарного изменения в процессе использовать символ 60 — символ полного дифференциала в отличие от изменения работы в элементарном процессе, где мы используем о(5щий символ бесконечно малых величин 6, отмечая при этом, даже при написании, что работа не есть полный дифференциал, и что, не являясь фуньщией состояния, она зависит от пути процесса.  [c.19]

Конечно-разностное представление дифференциального уравнения Фурье и граничных условий сводит решение задачи теплопроводности к расчету температур в конечном числе точек — узлов сетки (рис. 1.11). Чтобы дискретизованная задача была близка к исходной, необходимо сделать сетку достаточно частой. Поэтому число неизвестных (т. е. значений температур в узлах) оказывается большим, и решение задачи требует использования ЭВМ. Конечно-разностную аппроксимацию уравнения теплопроводности можно получить, записывая закон сохранения энергии для контрольного объема, содержащего внутренний узел К, L (заштрихован на рис. 1.11).  [c.31]

Понятие энергии неразрывно связано с движением материи энергия есть физическая мера движения материи. Различие отдельных видов энергии обусловлено качественным различием конкретных форм движения материальных тел. Взаимные превращения энергии тел отражают безграничную способность движения переходить из одних форм в другие следовательно, сохранение энергии выражает собой факт неуничто-жимости движения материального мира. В этой связи Ф. Энгельс называл закон сохранения и превращения знерши великим основным законом движения , абсолютным законом природы , а В. И. Ленин, подчеркивая принципиальное философское значение закона сохранения и превращения энергии, указывал, что этот закон является установлением основных положений материализма . Именно поэтому закон сохранения и превращения энергии с момента его открытия до наших дней подвергается ожесточенным нападкам со стороны реакционной идеалистической философии.  [c.27]


Смотреть страницы где упоминается термин Значение закона сохранения энергии : [c.140]    [c.39]    [c.74]    [c.186]    [c.239]    [c.515]    [c.579]    [c.580]    [c.56]    [c.137]    [c.175]    [c.136]    [c.325]    [c.193]   
Смотреть главы в:

Механика  -> Значение закона сохранения энергии



ПОИСК



Закон сохранения

Закон сохранения энергии

Сохранение

Сохранение энергии



© 2025 Mash-xxl.info Реклама на сайте