Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерии предельного состояния и разрушения элементов

В последние годы в области прочности деталей машин выполнены широкие исследования, связанные с определением критериев предельных состояний и изучением механики разрушения типовых элементов машин.  [c.14]

Процесс циклического нагружения элемента конструкции в условиях эксплуатации сопровождается постепенным накоплением повреждений в материале до некоторого критического уровня, который может быть охарактеризован с привлечением различных методов и средств исследования. Выбор средств определяется применяемыми критериями в оценке самого предельного состояния и его фактической реализацией к рассматриваемому моменту времени, как это было рассмотрено в предыдущей главе. Даже при отсутствии в детали трещины можно с большой достоверностью утверждать, что после длительной наработки в эксплуатации последующее после проверки нагружение может вызвать быстрое зарождение и далее распространение усталостной трещины. Оценка состояния материала с накопленными в нем повреждениями и прогнозирование последующей длительности эксплуатации до появления трещины, установление периодичности контроля за состоянием детали подразумевают использование структурного анализа на базе физики металлов. Это подразумевает обязательное применение методов механики разрушения для оценки длительности роста трещины и обоснования периодичности осмотров на всех стадиях зарождения и распространения трещин. Однако многопараметрический характер внешнего воздействия на любой элемент конструкции делает неизбежным введение в рассмотрение процесса накопления повреждений в конструкционных материалах с позиций синергетики, следовательно, возникает новое представление о процессе распространения трещин. Всю совокупность затрат энергии внешнего воздействия, вызвавших разрушение элемента конструкции, интегрально характеризуют достигнутое на определенной длине трещины предельное состояние, единичная реализация процесса прироста трещины и сформированная в результате этого поверхность разрушения.  [c.79]


Применительно к ВС гражданской авиации развитие усталостных повреждений в процессе эксплуатации в элементах систем управления имеет различные последствия в зависимости от того, по какому критерию предельное состояние было достигнуто. Если предельный размер трещины приводит к полному разрушению детали, то это предельное состояние сопровождается не только нарушением функционирования системы в целом, но и связано с нарушением силовой связи сопряженных деталей. В случае нарушения только функционирования, когда предельный размер трещины в детали не достигнут, последствия от развития трещины не связаны с нарушением механических связей. Однако в обоих случаях нарушение функционирования системы управления приводит к частичной или полной потере управляемости, а следовательно, к предпосылке летного происшествия.  [c.740]

Отмеченные ограничения возникают в результате стремления расширить области применения основных положений линейной механики разрушения на условия упругопластического деформирования и разрушения. Однако возможности такого перехода связаны с уровнем номинальной нагруженности рассчитываемых элементов и влиянием эксплуатационных факторов (температура, скорость нагружения и Т.Д.). Очевидно, что в этих условиях необходим анализ закономерностей, характеристик и критериев упругопластического деформирования и разрушения. Важным аспектом данного анализа является оценка влияния эффектов объемности напряженного состояния на определяемые характеристики трещиностойкости и его учет в уравнениях предельного состояния. Предварительные результаты, полученные в этом направлении, привели к необходимости использовать в расчетных соотношениях эффективный предел текучести в условиях, отличных от линейного однородного напряженного состояния. Наиболее успешно такой подход реализован в отношении деформационного (коэффициент интенсивности деформаций К[(,(,) и энергетического (Л-интеграл) критериев упругопластического разрушения [14, 30-32].  [c.22]

В тех случаях, когда упомянутые ранние стадии разрушения конструкционного материала по условиям эксплуатации конструкции являются допустимыми или разрушение материала рассматривается на более высоких структурных уровнях, начало разрушения композита можно, очевидно, связывать с разрушением отдельных структурных элементов соответствующего порядка. В частности, для слоистых композитов к настоящему времени хорошо развит аппарат послойного анализа разрушения [28, 109, 123, 146 и др.]. Основная идея послойного анализа разрушения слоистого композита сводится к следующему. Для каждого из М слоев пакета по тому или иному критерию предельного состояния оценивается несущая способность монослоя. Разрушенные монослои в заданном смысле исключаются из пакета, после чего производится соответствующий перерасчет НДС и анализ повторяется. Процедура прекращается после выполнения критерия макроразрушения слоистого пакета. Очевидно, что аналогичный подход легко может быть обобщен на случай произвольного структурного элемента композита, деформативные и прочностные характеристики которого известны.  [c.77]


Для расчета элементов конструкций на сопротивление усталости используют основные закономерности циклического разрушения в форме уравнений кривых усталости, предельных кривых, отражающих критерии такого разрушения в зависимости от объемности напряженного состояния и его неоднородности, характеристик дисперсии циклических свойств, асимметрии цикла и состояния поверхности.  [c.164]

Анализ и систематизация внешних нагрузок с последующей оценкой ресурса ВС или силовых элементов конструкции двигателя имеет конечной целью наиболее точную оценку возникающего напряженного состояния для оценки возможного предельного состояния с возникшей и развившейся трещиной. Предельное состояние по критерию зарождения трещины или по критерию достижения размера трещины, при котором реализуется быстрое неуправляемое окончательное разрушение элемента конструкции, достигается при напряженном состоянии элемента конструкции, оценка которого выполняется на основе различной информации.  [c.28]

Применительно к усталости предложено использовать в качестве силового критерия достижения предельного состояния материала соотношение (Ру/Т .) [4]. Согласно этому критерию, разрушение наступает после того, как в одном из циклов нагружения достигнута предельная величина напряженного состояния, характеризуемая рассматриваемым соотношением. Охарактеризовав напряженное состояние основного несущего силового элемента конструкции, можно оценить затраты энергии на его разрушение путем определения объема пластически деформируемого материала, соответствующего этому напряженному состоянию независимо от способа или условий внешнего циклического нагружения (число и направление действия силовых факторов).  [c.30]

В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

Деформационные характеристики и кривые усталости, полученные при однородном напряженном состоянии, использованы в качестве исходных данных для расчетной оценки ресурса элементов конструкций методом конечных элементов и на основе соотношений типа (2.14). Достижение предельных состояний определяли на основе деформационного критерия малоциклового разрушения в виде, представленном в гл. 1, 6.  [c.117]

Таким образом, для прогнозирования термоциклической прочности элементов конструкций необходимо обстоятельное исследование реальной термомеханической нагруженности и получение корректной информации о предельном состоянии материала по критериям усталостного и квазистатического малоциклового разрушения с учетом параметров действительного цикла упругопластического деформирования в максимально напряженных зонах конструкции.  [c.29]

При длительной работе элементов конструкций под переменными напряжениями с большим числом циклов (исчисляемым миллионами) предельные состояния определяются в основном теми изменениями состояния металла, которые постепенно в нем накапливаются в результате циклического деформирования (процесс усталости). Напряженное состояние в этом случае обычно рассматривают как упругое и неизменное во времени, хотя в состав деформаций входит некоторая доля пластических, особенно на начальных стадиях процесса. Предельное состояние характеризуется теми усилиями и пропорциональными им местными напряжениями в зонах концентрации, которые вызывают зарождение усталостной трещины (в пределах.в основном упругих деформаций) после определенного числа циклов. Условия возникновения трещин определяются критериями усталостного разрушения, отражающими как циклические свойства металла, так и особенности распределения напряжений в зонах концентрации.  [c.6]


При определении предельных усилий, т. е. несущей способности элементов конструкций, используют характеристики сопротивления материалов пластическим деформациям (пределы текучести или ползучести). и разрушению (пределы прочности, критические деформации или глубины трещин, число циклов или время, необходимое для образования трещин). Для сложных напряженных состояний используют условия пластичности или ползучести, а также критерии прочности (применительно к статическому или циклическому нагружению).  [c.7]

Устойчивые и неустойчивые состояния тела с трепанной. Тело с трещиной находится в состоянии механического равновесия, когда в любом элементе объема тела (как и для всего тела в целом) соблюдаются условия равновесия. Это означает, что нагрузка постоянна, нет движения элементов объема, следовательно нет распространения трещины (трещина неподвижна). Для того чтобы трещина стала распространяться, необходимо либо увеличить внешнюю нагрузку, либо (при постоянной нагрузке) снизить работу разрушения материала. С медленным ростом нагрузки трещина медленно растет. Малому приращению нагрузки соответствует малое приращение длины трещины, и, следовательно, рост нагрузки сопровождается соответствующим ростом длины трещины. Такое состояние тела с трещиной называется устойчивым (иногда квазистатическим или до-критическим) ростом трещины (или трещину называют устойчивой). Для устойчивости трещины соблюдается условие dP/dl > О, т. е. в предельном состоянии равновесия (нри соблюдении критериев разрушения) нагрузка является возрастающей функцией длины трещины.  [c.112]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]

Для отмеченных выше предельных состояний, видов и критериев разрушения принципиальное значение имеет наличие или отсутствие макродефектов в деталях машин и элементах конструкций.  [c.10]

Поэтому дальнейшее совершенствование нормирования должно вестись по пути наращивания удельного веса анализа безопасности, живучести и риска. При этом необходима существенная корректировка нормативной базы в направлении учета и разработки критериев, отражающих реальные предельные состояния элементов и участков трубопроводов. В частности, необходимо ввести в нормативное поле такой критерий, как "течь перед разрушением" и др. Это позволит в наиболее полной мере реализовать принципы эксплуатации газопроводных систем "по техническому состоянию".  [c.53]

Как бьшо показано в 7.5 (см. рис.7.5.10), моделирование НДС металла в зоне вершины острого концентратора или трещины позволяет адекватно отразить процесс деформирования реального конструктивного элемента из однородного металла. Там же показано, что критерием образования макротрещины может служить достижение предельного Уровня пластической деформации е, , зависящего от жесткости напряженного состояния У (см. рис.7.5.13). Анализ дальнейшего изменения НДС после образования макротрещины дает возможность судить о направлении и темпе роста развивающейся трещины по мере возрастания нагрузки, то-есть о характере разрушения.  [c.533]

В каждом из слоев многонаправленного слоистого композита возникает сложное напряженное состояние, даже если композит в целом находится под действием одноосного напряжения. Следовательно, и в простейшем случае нагружения композита начало разрушения слоя должно определяться при помощи соответствующего критерия предельного состояния. Предложено много разновидностей критериев прочности однонаправленных композитов, рассматриваемых как однородные анизотропные материалы (см., например, [10] ), в форме, удобной для описания экспериментальных данных. В основу этих критериев положена гипотеза, согласно которой однонаправленный волокнистый композит считается однородным анизотропным материалом. Можно ожидать, однако, что для оценки предельного состояния композита потребуется рассмотрение таких деталей механизма разрушения, которые определяются неоднородностью материала на уровне армирующего элемента. Дело в том, что виды разрушения, вызванные разными по направлению действия напряжениями, имеют принципиально различающиеся особенности.  [c.44]


Для соответствующих предельных состояний (хрупкого и квазихрупкого) по данным о критических напряжениях ак для образцов с надрезом (кривая 2) производят вычисление критических напряжений для элемента конструкции. В области А при вычислениях в качестве критерия разрушения используют критическое значение коэффициента интенсивности напряжений Ки или раскрытия трещины бк- Определение для температуры Т = — Тэ величин Стк при известном Ki проводится по уравнениям (2.9) линейной механики разрушения (ЛМР) и температурным зависимостям Ki типа (3.4). В области Б (нелинейная механика разрушения — НЛМР) в качестве критерия разрушения используют критическое напряжение Стк, зависящее от температуры Т [по уравнению (3.6)], размеров сечения [по уравнению (3.7)] и размеров трещины [по уравнению (3.8)]. Величины КгеП  [c.66]

Несмотря на то, что в настоящее время не существует универсального критерия прочности для композиционных материалов, состояние этой проблемы таково, что конструктор имеет возможность с достаточной стрпенью точности предсказывать начало разрушения, а в некоторых случаях и предельную нагрузку рассматриваемых элементов конструкций. В этой главе были изложены апробированные аналитические методы определения напряженного состояния и прочности композиционных материалов, основанные на теории слоистых сред и классических критериях разрушения. Достоверность этих методов подтверждается практикой их использования при расчете авиационных и космических конструкций, и поэтому они рекомендуются расчетчикам и проектировщикам. Одпако ограничения и допущения, принятые при построении методов расчета и формулировке критериев разрушения, всегда следует иметь в виду и применять те расчетные критерии, при которых эти ограничения не оказывают существенного влияния на результаты окончательного расчета.  [c.104]

В монографии систематически изложены вопросы сопротивления деформированию и разрушению при малоцикловом высокотемпературном нагружении. Разработаны способы интерпретации связи циклических напряжений и деформаций на основе изоциклических и изохронных диаграмм циклической ползучести и свойств подобия. Для определения предельных состояний по моменту образования разрушения используется деформационно-кинетический критерий длительной малоцикловой прочности. Закономерности деформирования и разрушения использованы для разработки основ методов оценки малоцикловой прочности элементов конструкций при нормальной и высоких температурах.  [c.2]

Результаты опытов на разрушение образцов конструкционных материалов обобщаются в виде силовых критериев разрушения [37, 70, 981, простейшими примерами которых могут служить условия постоянства максимального растягивающего напряжения при отрыве Огаах = сг == Оотр И постоянствз максимального касательного напряжения при разрушении срезом т ,ах = — ад = = 2тср, где Оа > Оз — главные напряжения и адр — константы материала. Известная диаграмма Н. Н. Давиденкова и Я- Б. Фридмана [981 (рис. 1.4) дает полезную, хотя чрезвычайно схематическую иллюстрацию зависимости того или другого типа разрушения от вида предельного напряженного состояния. Путь нагружения элемента изотропного материала наносится на плоскость Oi — Оа (а > 0), причем все точки горизонтальной оси отвечают состояниям = Oj = Oj > О, когда пластическое де-  [c.11]

Совокуттность условий (5.1.93), (5.1.94), (5.1.97) и (5.1.99) представляет собой структурный критерий длительной прочность монослоев, причиной разрушения которых пр и заданном д.тштелъ-ном нагруже гии яв ляется тот структурный элемент, условие предельного состояния которого выполняется первых .  [c.304]

Методы экспериментального определения характеристик тре-щиностойкости в условиях упругопластического деформирования требуют схематизации накопленного опыта испытаний. В этой области значительное развитие и наиболее широкое практическое приложение среди критериев нелинейной механики разрушения получили раскрытие трещины [11-13], коэффициент интенсивности деформаций в упругопластической области [14], энергетический З-интеграл [15-17] и предел трещиностойкости 1 [18-19], позволяющие анализировать закономерности разрушения, напряженно-деформированное состояние в вершине трещины на стадии ее инициации при значительных пластических деформациях и общей текучести материала, а также проводить оценку предельных состояний элементов конструкций с трещинами.  [c.20]

Обычно принято считать, что соотношения линейной механики разрушения справедливы вплоть до напряжения в нетто-сечении, составляющего 0,8 От предела текучести материала при одноосном растяжении. Однако, как показал анализ контуров пластических зон с использованием метода конечных элементов [34], пределы применимости подходов линейной механики разрушения сильно зависят от степени стеснения пластической деформации и поэтому определение критических значений Кь отвечающих достижению предельного состояния при упругопластическом поведении материала с трещиной, требует учета степени стеснения пластической деформации. Это возможно при использовании критериев подобия локального разрушения с определением пороговых или критических значений /(,, отвечающих реализации различных микромеханизмов разрушения на стадии локального и глобального разрушения. Важным является выделение следующих параметров на стадии нестабильности разрушения Клс критическое значение,/(i при переходе к нестабильности разрушения, определяемого микросколом. Kf соответствует переходу к ручьистому микрорельефу разрушения и реализуется при динамическом  [c.45]

Наибольшее значение имеет правильная оценка предельных состояний по кригериям вязкого, хрупкого, малоциклового и многоциклового усталостных разрушений на стадиях образования и развития трещин. Рассматриваемые в гл. I силовые, энергетические и деформационные критерии вязкого, квазнхрупкого и хрупкого разрушений являются основными для расчетов на прочность и ресурса вы-соконагружеиных несущих элементов машин й конструкций.. Используя эти критерии, можно определить  [c.6]

Развитие исследований по процессам деформации и разрушения в механическом и физическом аспектах способствует усовершенствованию расчета деталей конструкций на прочность и жесткость. Рассмотрение предельных состояний по критерию образования пластических деформаций, жесткости инициированию и развитию трещин позволило сблизить результаты расчетов с действительной несущей способностью конструктивных элементов и соответствующими опытными данными. Тем самым были углублены теоретические и экспериментальные основы инженерных расчетов на прочность и долговечность в связи с типом и режимом напряженного состояния. Дополнения физики твердого тела и физического металловедения способствовали объяснению макроскопическик закономерностей сопротивления деформациям и разрушению, влиянию на них времени тепловых и механических воздействий. При этом намечаются пути взаимодействия механики деформации и разрушения в констануальной трактовке с физическими представлениями о поведении кристаллов и кристаллических конгломератов.  [c.517]


В элементах конструкций, изготовленных из упругих и упругопластических материалов, трещины создают высокую местную концентрацию напряжений и деформаций в зонах, при.пегающих к вершине. Исследование напряженного и деформированного состояния в зонах трещин имеет существенное значение для анализа критериев разрушения. В общем случае величины напряжений и деформаций в зонах трещин зависят от формы и размеров элементов конструкций, вида напряженного состояния, а также от конфигурации и размеров трещин. А Трещины в элементах конструкций из упругих материалов рас-. сматривают как предельные источники концентрации напряжений — в виде надрезов с бесконечно малыми радиусами закругления в вершине. При этом выражение для местных напряжений  [c.191]

В геометрически сложных конструкционных элементах имеются области сложного напряженного состояния. Материал в этих областях с возрастанием степени его нагруженности (при увеличении внешних усилий) проходит упомянутые три стадии упругого и упругопластического деформирования, а также стадию разрушения. Считается, что можно подобрать такой параметр, который характеризует степень нагруженности материала в условиях сложного напряженного состояния аналогично тому, как это делается с помощью понятия напряжения а при простом растяжении. Упомянутый параметр (или критерий) обычно имеет размерность напряжения. В этом случае он называется эквивалентным напряжением с обозначением через Од Введение этого понятия означает, что любому сложному напряженному состоянию всегда можно сопоставить эквивалентное ему (по степени нагруженности) напряженное состояние простого растяжения. Отсюда следует, что различные сложные напряженные состояния (с различными соотношениями между главньЕми напряжениями а,, Оа, Од) эквивалентны друг другу, если характеризуются одним и тем же значением В частности, при любом сложном напряженном состоянии материал переходит в состояние предельной упругостРЕ при условии  [c.134]


Смотреть страницы где упоминается термин Критерии предельного состояния и разрушения элементов : [c.73]    [c.10]    [c.2]    [c.4]    [c.4]    [c.23]    [c.210]   
Смотреть главы в:

Безопасное развитие трещин в элементах оболочечных конструкций  -> Критерии предельного состояния и разрушения элементов



ПОИСК



Критерий разрушения

Предельное состояние

Состояние предельное по разрушени

Состояние разрушения

Состояние элемента предельное



© 2025 Mash-xxl.info Реклама на сайте