Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства отвержденных материалов

Свойства отвержденных материалов  [c.457]

Это армирующие материалы, пропитанные заранее определенным количеством равномерно распределенной смолы и переработанные таким образом, что сохраняются оптимальные технологические характеристики и обеспечивается воспроизводимость свойств отвержденного композита. Для пропитки применяют эпоксидные, полиэфирные, фенольные, кремнийорганические, полиимидные и термопластичные (например, полисульфон) смолы. Композиции смол используют в виде жидкостей, горячих расплавов и разбавленных растворителем систем, а также как олигомерные смеси.  [c.102]


Несущие слои (пластины), обладающие адгезионными свойствами. Такими материалами могут служить препреги на основе различных волоконных структур, в том числе стекловолокон, углеродных волокон, кварцевых или алюминированных стеклотканей. Связующее, нанесенное на волокно при отверждении, одновременно формирует несущий слой, обеспечивая соединение его с заполнителем.  [c.363]

Кроме описанных методов испытаний связующих и других компонентов материалов, описанных выше, зачастую требуется определение еще ряда свойств отвержденных (ненаполненных) связующих. Особенно это касается полностью отвержденных связующих, которые в процессе отверждения не образуют летучих (эпоксидные и несмешиваемые полиэфирные связующие).  [c.449]

Диэлектрическая постоянная и фактор рассеяния (тангенс угла диэлектрических потерь) могут быть использованы как параметры при определении свойств армированных материалов методами неразрушающего контроля. При заданных толщине образца и составе композита величина диэлектрической постоянной и тангенса угла потерь будет зависеть от степени отверждения связующего. Значение этих параметров уменьшается с ростом степени отверждения связующих. Аналогично может быть определено и содержание влаги, при этом точность может быть достигнута 1 %  [c.478]

Наблюдается значительное расхождение в экспериментальных данных по k, приводимых в различных источниках для одних и тех же или подобных композиционных материалов. Нельзя с полной уверенностью объяснить причины такого разброса экспериментальных данных, но, вероятно, они связаны с отклонением технологических параметров от оптимальных в процессе изготовления образцов композиционных материалов. Композиционные материалы изготавливаются посредством формования и отверждения при тщательно контролируемом давлении и температуре. Заметные отклонения от установленного оптимального режима приводят не только к ухудшению механических свойств композиционных материалов, но и оказывают значительное влияние на их теплопроводность, особенно, когда одним из дефектов является повышенная пористость композиционного материала.  [c.303]

Таким образом, регулируя состав олигомеров, механизм, кинетику и степень их отверждения, можно в широких пределах регулировать их свойства в исходном и отвержденном состояниях, а также свойства композиционных материалов на их основе.  [c.368]

При использовании любого из способов восстановления деталей следует учитывать такие факторы, которые оказывают решающее влияние на формирование качества ремонта автомобилей. Для сварки и наплавки таковыми являются способ ведения процесса, режимы, вид и свойства присадочных материалов, характер и точность окончательной обработки. Качество и надежность деталей, восстановленных электролитическими и химическими покрытиями, зависят от состава применяемых электролитов, способа осаждения, режимов, вида окончательной обработки. При восстановлении деталей пластическим деформированием их характеристики во многом зависят от режимов механической и термической обработки. Надежность деталей, восстановленных клеевыми композициями, зависит от свойств и соотношения применяемых материалов, режимов отверждения, вида окончательной обработки. Практически для всех способов восстановления завершающими являются операции механической обработки, которые должны обеспечить заданную ТУ точность размеров, геометрию поверхностей, взаимное положение осей и т. д.  [c.191]


Легкие и сверхлегкие. полимерные материалы в зависимости от структуры исходного полимера, его физико-механических и химических свойств имеют различные свойства. Эти материалы получают разными способами 1) вспениванием эмульсии или раствора мономера, полимера воздухом или газом (этим способом получают только такие материалы, которые после вспенивания отверждаются) 2) вспениванием газообразными продуктами, образующимися в процессе отверждения полимера, или газами, выделяющимися при разложении пенообразователя  [c.266]

Наиболее важными показателями для оценки технологических свойств полимерных материалов являются пластичность, скорость отверждения и структурно-механические свойства материала в изделии [15, 16]. Эти показатели тесно связаны со степенью поликонденсации, полидисперсностью и структурой материала, а потому они характерны для пластмасс и не менее важны, чем показатели механических и электрических свойств. Известно, что деформационные процессы, протекающие в материале во времени под действием приложенных сил, а также его упруго-эластические и вязко-пластические свойства зависят от структуры полимера.  [c.202]

Использование среднеактивных аминных отвердителей взамен ПЭПА позволяет несколько улучшить прочностные характеристики, стабилизировать процесс отверждения и свойства полимерных материалов.  [c.26]

Процесс отверждения эпоксидных смол ангидридами следует проводить в присутствии катализатора. Это позволяет не только снизить температуру и сократить время отверждения, но и полностью исключить влияние ряда нежелательных побочных реакций отверждения и стабилизировать свойства полимерных материалов.  [c.28]

Скорость отверждения зависит как от природы и свойств пресс-материалов, так и от ряда технологических факторов (глубины прогрева, использования предварительного подогрева и подпрессовок) Так, для новолачных фенольных пресс-порошков скорость отверждения 15—20 с/мм, для аминопластов 30—60 с/мм.  [c.82]

Физико-механические и электроизоляционные свойства отвержденного компаунда не только определяются свойствами исходной эпоксидной смолы, но и во многом зависят от отвердителя, состава наполнителя и технологических режимов отверждения компаунда (температура, время). Путем изменения этих факторов можно менять в широких пределах свойства компаунда, что является большим преимуществом этих синтетических заливочных масс перед традиционными в силовой полупроводниковой технике изоляционными материалами— стеклом и керамикой.  [c.164]

Композиция клея была разработана и создана на базе эпоксидной смолы. Клей на основе эпоксидных смол- при отверждении имеет незначительную усадку, отверждается как при повышенных, так и при нормальных температурах, имеет хорошие физико-механические свойства, а также высокую адгезионную прочность к различным материалам. Клей на основе эпоксидных смол ио сравнению с другими синтетическими клеевыми соединениями имеет более высокую водостойкость. Последняя характеристика  [c.122]

Кроме связующего, в состав пластмассы могут входить и другие материалы, по своему значению разделяющиеся на такие группы наполнители, пластификаторы, ускорители отверждения, красители, вспомогательные материалы. Свойства деталей из пластмассы в первую очередь определяются качеством связующего, однако и наполнители также оказывают определенное влияние.  [c.192]

СВЧ приборы для контроля вязкости полимерных материалов и связующих, содержания компонентов и процесса отверждения связующего основаны на использовании корреляционных зависимостей между искомыми параметрами и диэлектрическими свойствами среды.  [c.261]

Точность передачи деформации электрическими тензометрами сопротивления с проволочными датчиками зависит в большой степени от применяемых изоляционных покрытий и клеев. Покрытия и клеи должны иметь следуюш ие основные свойства а) достаточную механическую прочность б) высокий модуль упругости в) минимальную пластическую деформацию г) легкость нанесения и сравнительно быстрое отверждение д) способность к сцеплению с проволокой и поверхностями изделий, на которые устанавливаются датчики е) стойкость к воздействию воды и других сред ж) химическую инертность к тензометрической проволоке и материалу изделий и) высокое электрическое сопротивление. Свойства клеевых пленок должны по возможности мало изменяться как при хранении тензодатчиков, так и при их работе в широком интервале температур.  [c.279]


У эпоксидных смол колоссальная липкость к большинству материалов, причем она, сохраняясь при отверждении, переходит в высокую адгезию твердого тела. Это свойство обусловило использование эпоксидных композиций в качестве клеев.  [c.47]

Все главы книги посвящены анализу неупругих свойств в задачах деформирования и разрущения композитов. Последовательно рассмотрены общие вопросы построения композитов, природа их прочности и пластичности, механизм разрушения и усталости материалов с разной укладкой арматуры дан анализ разрушения слоистых композитов в условиях одноосного и двухосного нагружений с обзором критериев предельных состояний для анизотропных материалов осуществлен учет вязкоупругости в задачах деформирования и разрущения очерчены области применения линейной механики разрушения для композитов наконец, рассмотрены напряжения, возникающие вблизи волокон в процессе отверждения полимерной матрицы.  [c.5]

Качество отверждения и степень полимеризации полимерных материалов зависят от температурно-временного режима формования изделия. Недостаточные нагрев и время выдержки приводят к неполному отверждению материала, что снижает физико-механические свойства. Нарушение температурно-временного режима при охлаждении изделия вызывает неравномерную усадку, коробление и образование трещин и расслоений, а также внутренних остаточных напряжений.  [c.11]

Вакуумное формование. Метод вакуумного формования основан на пропитке армирующего материала связующим за счет создания разряжения в рабочей зоне формования изделия. Вакуумная пропитка существенно уменьшает содержание пор и воздушных пустот в материале, а также обеспечивает более равномерную пропитку материала связующим. Это приводит к значительному увеличению физико-механических свойств и способствует получению материала с более однородной структурой. Однако ряд дефектов, присущих контактному формованию, проявляется и при вакуумном формовании. Такими общими дефектами являются нарушения ориентации армирующего материала, оголение текстуры в наружных слоях изделия, наличие участков с неполным отверждением связующего, коробление и складки в слоях стеклопластика, усадочные явления и т. д.  [c.13]

Неравномерный нагрев оправки создает участки в материале изделия, в которых будет проявляться неоднородность физико-механических свойств. В участках с недостаточным разогревом оправки будет наблюдаться пониженная адгезия слоев материала. Чрезмерный нагрев вызовет избыточное размягчение связующего и повышение газообразования, что приведет к увеличению содержания пор после отверждения стеклопластика,  [c.15]

Композиционные материалы (КМ) совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаропрочность, химическая стойкость, высокая твердость, смазывающие свой-ст ва) [1, с. 48—60 2]. Одни из них представляют собой керамико-металлические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии, другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известны лишь недавно [1—4].  [c.7]

Эпоксидные смолы обычно получают из бисфенола А и эпи-хлоргидрина. Их молекулы содержат концевые эпоксидные группы, а также гидроксильные группы в центральных звеньях, что обусловливает возможность отверждения эпоксидных смол с помощью аминных, кислотных и других отвердителей. Отвердители могут оказывать каталитический эффект или участвовать в формировании узлов полимерной сетки. При этом можно получать сетчатые полимеры самой различной структуры, которая дополнительно может быть модифицирована введением активных растворителей, пластификаторов и т. п. В общем случае, механические свойства макрокомпозиционных материалов на основе эпоксидных связующих в качестве первичной непрерывной фазы значительно лучше, чем на основе полиэфирных связующих, хотя последние дешевле (см. [2] дополнительного списка литературы). Композиционные материалы на основе эпоксидных связующих обладают более высокой водо- и химической стойкостью, а их объемная усадка не превышает 2%. Наполнители, такие как кварцевый песок, металлические порошки, металлическая вата и асбест, широко используемые в производстве эпоксидных заливочных компаундов и в материалах для оснастки, снижают объемные усадки и значительно изменяют термический коэффициент расширения и теплопроводность эпоксидных связующих. По сравнению с полиэфирными связующими эпоксидные материалы имеют более специальное назначение и широко применяются в различных элементах летательных аппаратов, в электротехнической и электронной промышленностях.  [c.23]

Снкжеше тешературы отверждения до 120-150°С с сохранением ВЫС01ШХ эксплуатационных свойств отвераденша материалов и жизнеспособности композиции при хранении является важной народнохозяйственной задачей.  [c.118]

Физико-механические свойства отвержденных слоистых материалов на основе смесей версамида с эпоксидными смолами  [c.145]

В то же время фторопласт-4 обладает исключительно ценным сочетанием свойств. Температурный интервал применения фторопласта-4 находится в пределах от —269 до 260° С, т. е. он является наиболее широким но сравнению с температурным интервалом применения других термопластов и очень многих отвержденных материалов. Малое изменение диэлектрических свойств в указанном интервале температур, высокая стойкость к атмосферным возде1 ютвиям и к действию любых агрессивных сред (в том числе концентрирован-  [c.42]

В качестве отвердителей эпоксидных олигомеров могут применяться различные продукты. Важнейшими можно считать следующие щелочные соединения на основе аминов (производные аммиака НН.,, в котором атомы водорода замещены углеводородными радикалами) кислые — ангидриды различных органических кислот. В качестве отвердителей имеют применение также и некоторые олигомеры-(фенолформальдегидные, анилинформальдегидные). Амин-иые отвердители могут отверждать эпоксидные смолы при комнатных температурах, но для ускорения отверждения и получения оптимальных свойств отвержденного продукта рекомендуется повышенная температура (70—100° С). Ангидридные отвердители требуют применения температуры в пределах 120—200° С. Отверждение эпоксидных олигомеров происходит путем соединения олигомеров. с отвердителем без выделения летучих продуктов, что обеспечивает небольшую усадкув процессе отверждения. Иногда к смолам добавляют так называемые активные разбавители, уменьшающие вязкость для улучшения технологичности олигомеров при их использовании и входящие в состав отвержденных смол. Возможно использование ускорителей отверждения. На свойства отвержденных продуктов влияет не только тип олигомера, но и отвердитель. Олигомеры, отвержденные ангидридами, имеют более высокие электри-" ческие и механические свойства, чем отвержденные аминами. Нагревостойкость композиционных материалов на основе неорганических наполнителей и эпоксидных полимеров может быть доведена до класса Н, но в большинстве случаев эпоксидные полимеры дают системы изоляции классов нагревостойкости В и Р. Циклоалифатические полимеры имеют по сравнению с диановыми более высокие электрические свойства, влаго- и химостойкость, нагревостойкость, атмосферостойкость и трекингостойкость, а также большую скорость отверждения. Известным недостатком циклоалифатических смол является их хрупкость. Эпоксидные полимеры отличаются высокими механическими свойствами, хорошей адгезией к разным материалам. Они обладают хорошей короностойкостью. Следует отметить кроме  [c.141]


Комбинированные (композиционные) материалы совмещают в себе свойства металлов (электро- и теплопроводность, пластичность и др.) и неметаллов (жаростойкость, химическая стойкость, высокая твердость). Одни из них представляют собой керамико-ме-таллические композиции (керметы) и изготовляются промышленным способом с использованием методов порошковой металлургии другие — волокнистые композиционные и дисперсно-отвержденные материалы, которые стали широко известными лишь в последнее десятилетие Новым способом получения таких материалов является гальванический, предусматривающий осаждение комбинированных электрохимических покрытий (КЭП) из электролитов с наложением электрического тока или без него. Преимущества способа по сравнению с методами порошковой металлургии следующие  [c.5]

Развитие и промышленное применение процесса намотки потребовало разработки специальных материалов (их иногда называют намоточными) и новых технологических приемов. В их числе программированная намотка, намотка с дополнительным давлением, с послойным отверждением, комбинированная намотка. Появились новые намоточные высокомодульные материалы — боро-, угле- и органопластики. Применение плоских прессованных образцов для сравнения способов намотки, оценки свойств этих материалов и в.лияния параметров намотки оказалось безуспешным. Особенности намотки заставляют учесть такие факторы, как влияние натяжения II искривления армирующих волокон, переменное натяжение по толщине материала, наличие дополнительного уплотняющего межслойного давления, опасность размотки, слабое сопротивление межслойному сдвигу и поперечному отрыву. Перечисленные явления  [c.205]

Продолжительность процесса перехода реактопластов из высокоэластичного или вязкотекучего состояния в состояние полной полимеризации определяет скорость отвертдения. Скорость отверждения (полимеризации) зависит от свойств связующего (термореактивной смолы) и температуры переработки. Низкая скорость отверждения увеличивает время выдержки материала в пресс-форме под давлением и снижает производительность процесса. Повышенная скорость отверждения может вызвать преждевременную полимеризацию материала в пресс-форме, в результате чего отдельные участки формующей полости не будут заполнены пресс-материалом.  [c.429]

Конструкционные материалы и покрытия на основе эпоксидных смол обладают исключительно высокими физико-химическими показателями и высокой химической стойкостью во многих агрессивных средах. Эпоксисмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кислотостойкостыо, щелочестойкостью и теплостойкостью до 110—120" С. Основными ценными свойствами эпоксидных смол являются назначительная их усадка при отверждении и высокая адгезия к различным материалам (металлу, бетону, керамике II др.).  [c.407]

Покрывные сверхнагревостойкие составы бывают органосиликатные и металлофосфатные. Первые получаются при взаимодействии кремнийорганических полимеров, силикатов и некоторых окислов с введением разных добавок, например отвердителей. Они обладают неплохими технологическими свойствами в виде суспензий составных частей в толуольных растворах кремнийорганических полимеров. Как правило, эти материалы в отвержденном состоянии имеют хорошую адгезию к металлам, большинству пластмасс, керамике, выдерживают резкие перепады температур, хорошо защищают от повышенной влажности и воды. Большинство органссиликатных покрытий могут длительно работать при 500—700° С. Отверждение может быть при комнатной и повышенной температурах. Для примера укажем на электрические свойства некоторых из этих покрытий при повышении температуры от 20 до 700° С р снижается с 10Ч до Ю Ом-м, о с 10 до 5 МВ/мм.  [c.246]

Влияние типа армирующих волокон и схем армирования на формирование свойств. Для изготовления пространственно-армированных углерод-угле-родных композиционных материалов применяют армирующие волокна различных видов (нити, жгуты, стержни и т. д.) с различными физикомеханическими свойствами. Кроме того, армирующие каркасы, имеющие одну и ту же структурную схему, могут быть созданы различными методами (см. с. 168), что оказывает определенное влияние на свойства материала. О влиянии типа волокон на формирование свойств композиционного материала свидетельствуют данные (рис. 6.8), полученные из опытов на изгиб образцов, вырезанных из материала в направлении г [111]. Армирующий каркас был создан прошивкой в направлении 2 пакета, набранного из слоев низкомодульной графитовой ткани. Для прошивки использовали как обычные непропитан-ные углеродные жгуты и нити с различной площадью поперечного сечения, так и предварительно пропитанные и отвержденные (в виде стержней) нити. При изготовлении материалов изменялись только содержание и тип волокон направления z в двух других направлениях параметры армирования сохранялись постоянными.  [c.172]

Органические и кремнийорганические полимеры неприемлемы для целей высокотемпературной тензометрии ввиду их недостаточной теплостойкости, не превышающей 250 [1—3]. Наиболее пригодными в высокотемпературной тензометрии оказались органосиликатные материалы В-58Т, ВН-12Т и ВН-15Т [4—6]. Однако эти материалы требуют высоких температур отверждения (200—300°), что не всегда возможно осуществить при установке тензодатчиков на изделия. Поэтому Институтом химии силикатов АН СССР ре1палась задача снижения те. 1пературы отверждения органосиликатных материалов при сохранении их свойств.  [c.279]

Полное отверждение смолы на границе раздела является только одним из факторов, определяющих свойства композитов. Например, при аппретировании стеклянного наполнителя фенилсила-ном достигается полное отверждение полиэфирной смолы, но фенилсилан неэффективен как аппрет, поскольку не реагирует со смолой. Вторым фактором, определяющим свойства композитов, является взаимодействие силана со смолой, в результате чего смола наряду с силанолом присутствует на поверхности минерала. Модифицированная силанолом смола оказывается связанной с наполнителем гидролизуемыми связями, что придает материалу пластичность с сохранением его водостойкости.  [c.205]

Порошки барий — феррита могут быть такя е смешаны с пластичным связующим, уплотнены прессованием с приданием требуемой формы и затем подвергнуты термообработке для отверждения пластика. Изделия требуемой формы можно получить и методом инжекционного прессования. Как и магниты с резиновой связкой, эти материалы обладают более низкими магнитными свойствами, чем керамические магниты. Магниты с пластичным связующим могут быть использованы в маломощных недорогих двигателях обычно в качестве роторов.  [c.445]

В работе [33] исследовано влияние связей по поверхностям раздела на прочность аналогичной системы эпоксидная смола — стекло и показан подобный характер изменения прочностных свойств композитов, изготовленных с применением разделяющих и соединяющих составов, а также без обработки шариков. Различие прочностных свойств этих трех композитов было значительно больше различия, определенного в работе [56]. Одним из объяснений этого может быть более низкая температура отверждения композитов (60 °С в работе [33] и 150 °С в работе [56]), которая приводила к меньшим сжимающим напряжениям вокруг каждого стеклянного шарика и в результате этого к уменьшению приложенных напряжений, необходимых для образования псевдопор. Характер кривых напряжение — деформация для композитов, изготовленных с применением разделяющих и соединяющих составов, совпадал с приведенными в работе [56], вновь подтверждая, что при применении разделяющих составов перед разрушением образуются псевдопоры. Кривые напряжение — деформация для композитов с поверхностно необработанными шариками показывают, что в этих материалах также образуются псевдс-поры.  [c.51]


И если эпоксидная смола всегда работает во славу эпоксидных противокоррозионных материалов, то о поли-этиленполиамине этого сказать нельзя. Из-за него бывают различные неприятности, например, отверждение композиций проходит слишком медленно или, наоборот, слишком быстро, при этом образуются покрытия с невысокими защитными и механическими свойствами.  [c.50]

На рис. 7.5,6 показано распределение термических напряжений в матрице композита с ортогональной схемой армирования [0°/90°]s (свойства компонентов те же, что и у рассмотренного однонаправленного композита). Как видно, распределение усадочных напряжений в матрице изменяется со схемой армирования композита. У композита [0790°]s напряжения в матрице в направлении армирования значительно выше, чем в однонаправленном материале, и отношения главных напряжений различны. Влияние термических усадочных напряжений на механические характеристики слоистого композита будет обсуждаться в следующих разделах. Предварительно рассмотрим, как влияют на величину усадочных напряжений свойства ползучести полимерной матрицы. Без учета этих свойств нельзя рассчитать изменения поля напряжений, связанные с режимом охлаждения и дополнительного отверждения.  [c.262]

Подводя итог изложенному, можно сказать, что рассмотренный комбинированный подход, объединяющий метод конечных элементов и анализ слоистой среды, является приемлемым для прогнозирования свойств слоистых композитов при простых температурно-силовых воздействиях, когда материал матрицы нелинейно упругий и чувствителен к ползучести, Применение этого подхода к боропластикам на эпоксидном связующем подтвердило оценки уровней усадочных напряжений в этих материалах, полученные при помощи линейного термоупругого анализа. Усадочные напряжения, определенные с учетом ползучести для типичного цикла отверждения слоистого композита, могут в зависимости от схемы армирования составлять по величине от 80 до 100% усадочных напряжений, рассчитанных при помощи линейного термоупругого анализа. Величина усадочных напряжений, по-В1 димому, не чувствительна к небольшим изменениям скорости охлаждения композита. Однако нагрев выше температуры отверл<дения (повторный) приводит к значительному увеличению усадочных напряжений.  [c.283]


Смотреть страницы где упоминается термин Свойства отвержденных материалов : [c.213]    [c.19]    [c.21]    [c.422]    [c.33]    [c.192]    [c.121]    [c.167]   
Смотреть главы в:

Справочник по композиционным материалам Книга 2  -> Свойства отвержденных материалов



ПОИСК



Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте