Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура сварных соединений чугуна

СТРУКТУРА СВАРНЫХ СОЕДИНЕНИЙ ЧУГУНА  [c.66]

Раздел 5. Структура сварных соединений чугуна  [c.278]

К сварным соединениям чугунных деталей предъявляются следующие требования возможность обработки обычным режущим инструментом, прочность металла шва должна быть не ниже прочности основного металла, зона термического влияния (часть основного металла, которая в процессе сварки поддается термическому влиянию) должна быть минимальной, равнопрочность соединения, однородность наплавленного и основного металла детали по химическому составу и структуре.  [c.105]


В атласе описаны методы металлографии, способы приготовления шлифов для макро- и микроанализа, приведены сведения о количественном и качественном анализе структур. Широко представлены макро- и микроструктуры сварных соединений углеродистых, среднелегированных и высоколегированных сталей, чугуна и цветных металлов, выполненных различными способами сварки плавлением н давлением. Даны иллюстрации структур сварных соединений разнородных металлов, структур плакирующих слоев, зон сплавления и зон термического влияния при наплавке, а также структур, образующихся при термической резке. Показана возможность металлографического анализа для объяснения причин разрушения сварных соединений.  [c.4]

Качество сварного соединения чугунных изделий характеризуется обрабатываемостью обычным режущим инструментом, твердостью металла шва, переходных зон и основного металла равнопрочность соединения однотипностью наплавленного и основного металла по химическому составу и структуре.  [c.540]

Сварка ковкого чугуна производится как до томления, так и после томления. При сварке чугуна до томления, т. е. при сварке белого чугуна, необходимо стремиться получить структуру сварного соединения, близкую к структуре белого чугуна. Необходимо отметить, что как при сварке серого чугуна трудно полностью предотвратить выделение углерода в виде цементита, так при сварке белого чугуна — выделение углерода в виде графита.  [c.292]

Наиболее высокие механические свойства сварных соединений чугуна достигают при сварке однородным металлом. При сварке чугуна чугуном необходимо обеспечить заданный состав наплавленного металла (обычно близкий основному — серому чугуну) и определенную скорость охлаждения, чтобы избежать образование отбела и тре.щин. Сварку осуществляют с нагревом изделия до температуры 400—700 °С. Последующее охлаждение со скоростью 50—100°С/ч гарантирует отсутствие цементита и ледебурита в структуре наплавленного чугуна и околошовной зоне.  [c.317]

Свариваемость и свойства сварных соединений зависят от структуры чугуна. Структура определяется составом чугуна и технологическими факторами, главным из которых является скорость охлаждения с высоких температур. Главный процесс, формирующий структуру,— это процесс графитизации, т. е. процесс выделения углерода в чугуне. Процесс графитизации при сварке является благоприятным, так как выделение углерода в свободном состоянии уменьшает хрупкость чугуна. Все элементы, содержащиеся в чугуне, делятся на две группы  [c.129]


ГС — способ сварки плавлением, при котором металл в сварочной зоне нагревается пламенем газа (ацетилена, метана), сжигаемого для этой цели в смеси с кислородом в сварочных горелках. Преимущество ГС —это ее универсальность. С помощью ГС можно сваривать металлы различной толщины с различными свойствами (стали, чугуны, цветные металлы). Недостатками ГС являются трудность автоматизации процесса и длительное тепловое воздействие на металл, что приводит к изменению структуры и формы сварного соединения.  [c.57]

Чугун относится к категории плохо свариваемых сплавов. Его сваривают при исправлении дефектов в отливках и ремонте деталей. Дуговая сварка чугуна чугунными электродами с покрытиями не обеспечивает хорошего качества сварных соединений. Металл шва получает структуру белого чугуна, а з. т. в. закаливается. 0 затрудняет механическую обработку сварных соединений и может привести к образованию трещин.  [c.277]

Предварительный нафев деталей при сварке составляет 500.. .700 °С с последующей после сварки термической обработкой изделия по режиму отжига при 800...900 °С с выдержкой 1,5...2 ч и охлаждению со скоростью не более 75 °С/ч. Сварные швы по содержанию углерода и кремния близки к их количеству в чугуне, что обеспечивает необходимые механические свойства сварных соединений с металлом шва, имеющим структуру с глобулярным фафитом.  [c.356]

Сварочный нагрев и последующее охлаждение настолько изменяют структуру и свойства чугуна в зоне расплавления и околошовной зоне, что получить сварные соединения без дефектов с необходимым уровнем свойств оказывается весьма затруднительно. В связи с этим чугун относится к материалам, обладающим плохой технологической свариваемостью. Тем не менее сварка чугуна имеет очень большое распространение как средство исправления брака чугунного литья, ремонта чугунных изделий, а иногда и при изготовлении конструкции.  [c.411]

Серый чугун относится к категории ограниченно свариваемых сплавов. Серый чугун сваривают с целью исправления дефектов литья и ремонта при наличии в деталях пор, раковин, трещин, отколов и т. п. Дуговая сварка холодного металла чугунными обмазанными электродами не обеспечивает хорошего качества сварных соединений. Металл шва и переходной зоны приобретает отбеленную структуру, а околошовная зона закаливается. Для устранения закалки и отбельной структуры необходим высокотемпературный длительный отжиг.  [c.429]

Появление высокопрочных чугунов потребовало применения сварки не только в ремонтных целях, но и для изготовления сварно-литых конструкций. Наличие в чугуне графитовых вкраплений, разобщающих металлическую основу, является главной причиной хрупкости чугуна и низкой его прочности при разрыве. За счет измельчения графитовых включений и придания им компактной формы можно резко повысить механические свойства чугунов. В зависимости от типа чугунной детали и условий ее эксплуатации к сварному соединению обычно предъявляются следующие основные требования механическая прочность, плотность, обрабатываемость режущим инструментом. Однако при сварке чугуна возникает целый ряд трудностей, обусловленных его химическим составом, структурой и механическими свойствами. Главные из них следующие  [c.155]

Правильно выполненное сварное соединение обладает механическими свойствами, структурой и химическим составом, близкими к свойствам серых литейных чугунов.  [c.323]

Железо-никелевые электроды. Металл стержня этих электродов обычно содержит 40—60% никеля и 60—40% железа. Такие сплавы дают хорошее соединение с чугуном, обеспечивают высокую прочность и вязкость сварного соединения. Отсутствие меди делает этот сплав более однородным и плотным. Железо-никелевые сплавы имеют ряд технологических преимуществ перед сплавами типа монель большую прочность и вязкость, меньшую усадку, одноцветность наплавки с чугуном, почти полное отсутствие твердых структур в переходных зонах.  [c.330]


Сварка чугуна. Дуговая сварка холодного металла чугунными обмазанными электродами не обеспечивает хорошего качества сварных соединений. Металл шва и переходной зоны приобретает отбеленную структуру, а околошовная зона закаливается. Для устранения закалки и отбеленной структуры необходим высоко- температурный длительный отжиг.  [c.311]

Температура предварительного подогрева определяется размерами детали общей жесткостью места, подлежащего заварке толщиной стенок объемом наплавляемого металла структурой чугуна. Для большинства деталей подогрев до 400—450° обеспечивает возможность получения качественного сварного соединения и создает условия, исключающие трещинообразование.  [c.540]

Холодная сварка чугуна стальными электродами любых марок не дает возможности получить сварное соединение без твердых закаленных структур в переходных зонах. Эти зоны являются самым слабым местом сварного соединения.  [c.545]

Сварка стальными электродами применяется при ремонте неответственных чугунных изделий небольших размеров с малым объемом наплавки, не требующих после сварки механической обработки. Выполненное сварное соединение неоднородно по структуре, часто не обладает плотностью и имеет очень невысокую прочность.  [c.558]

Чугуны относятся к группе материалов, обладающих плохой технологической свариваемостью. Это обусловлено несколькими причинами. В связи с повышенной жидкотекучестью чугуна затруднено удерживание расплавленного металла шва от вытекания. Склонность чугуна при высоких скоростях охлаждения закаливаться с образованием хрупких закалочных структур приводит к образованию холодных трещин. Кроме того, при быстром охлаждении происходит отбеливание сварного соединения и на границе сварного шва и основного металла образуется тонкая прослойка из белого чугуна. Поскольку эта прослойка непластична, даже при незначительных деформациях по ней происходит разрушение шва.  [c.267]

Сварку чугуна применяют для устранения различных дефектов литья при ремонте чугунных изделий, а также при изготовлении сварно-литых чугунных деталей и трубопроводов. Чугун относится к ограниченно свариваемым сплавам, так как оно обладает низкой пластичностью и склонен к отбеливанию при быстром охлаждении. Трещины возникают в процессе сварки, а также при остывании сварного соединения, когда возникают напряжения растяжения. Возможность образования трещин резко уменьщается, если свариваемая деталь предварительно нагрета до 350—600° С. Интенсивное газовыделение из сварочной ванны, которое продолжается, и на стадии кристаллизации может приводить к образованию пор в металле шва. Чтобы в процессе сварки обеспечить возможность получения структуры серого чугуна, в металл шва и около-шовной зоны вводят графитизаторы (кремний, углерод,  [c.674]

Контактная сварка. Сварка разработана главным образом для соединения чугунных труб и вьшолняется с оплавлением и предварительным подогревом концов труб с целью предупреждения образования закалочных структур. Структура исходного чугуна оказывает влияние на качество сварки. Удовлетворительные результаты получаются при сварке изделий из чугуна с мелким графитом, например труб центробежной отливки. По качеству сварные соединения не уступают основному металлу. В зоне сварного соединения в ряде случаев не обнаруживается структурно свободный цементит, тогда как до сварки в металле труб он встречается в значительных количествах. Сварные соединения получаются достаточно плотными. Разработаны режимы сварки труб различного диаметра (табл. 9-25). Изготовлены и успешно внедрены на заводах специализированные установки для контактной сварки чугунных труб.  [c.508]

Электроды на основе меди. Медь, как и никель, не образует химических соединений с углеродом. Она практически не растворима в железе. Поэтому при сварке чугуна медными электродами шов получается неоднородным. В медной основе расположены включения высокоуглеродистой железной фазы, часто имеющей мартенситную структуру. Кроме того, по границе сплавления создается зона повышенной твердости вследствие образования ледебурита. Поэтому обрабатываемость сварных соединений затруднена. К числу других недостатков следует отнести повышенную склонность к образованию пор, низкую производительность и довольно высокую стоимость электродов.  [c.512]

Медь п никель не образуют соедпненпй с углеродом, но пх присутствие в сплаве уменьшает растворимость углерода в железе и способствует графитнза-цип графита. Титан и ванадий образуют межатомные связи с углеродом значительно более прочные, чем между углеродом и железом. При наличии этпх элементов в ванне расплавленного металла в первую очередь образуются карбиды ванадия п титана, которые не растворяются в железе п не дают твердых включе-пип. Таким образом можно получить сварное соединение чугуна, свободное от твердых цементитных включений. Возможны значительные перемещения углерода пз околошовной зоны в металл шва и обратное явление — увеличение количества углерода в переходных зонах вследствпе диффузии его из металла шва, что оказывает значительное влияние на конечную структуру сварного соединения и его обрабатываемость.  [c.285]

Наплавка стальным электродом валика на чугунную деталь дает в первом слое чугун с пониженным содержанием углерода, не превышающим 1,5—1,8%. Такие сплавы имеют большую хрупкость и легко образуют твердые закаленные зоны. Во втором слое наплавки содержание углерода уменьшается до 0,5—0,6%, и только в третьем слое оно приближается к содержанию его в металле электрода (0,1%). Технологические приемы сварки чугуна стальными электродами, к которым относятся сварка первых слоев на режимах с малой погонной энергией применение электродов малого дияметра (не более 3—4 мм) уменьшение тока до 30—35 а на 1 мм диаметва электрода обеспечение минимально возможной глубины проплавления (0,5—2,0 мм) основного металла двухслойная наплавка, при которой после наложения первого валика длиной 50—60 мм сварщик сразу же наплавляет на этот валик второй слой, позволяют частично улучшить структуру сварного соединения и несколько увеличить пластичность металла в первых слоях наплавки.  [c.138]


Железоникелевые сплавы образуют непрерывный ряд твердых растворов. Сплавы, содержащие свыше 30 % N1, являются аустенитными при комнатной температуре и не имеют а-превращения. Расплавленный N1 может растворять значительное количество С, который выделяется при охлаждении больщей частью в виде графита. Присутствие С в тройном сплаве Ре — N1—С способствует получению аустенитной структуры при меньшей концентрации N1. Никелевый аустенит, растворяющий больщое количество С без образования карбидов, имеет высокую пластичность и низкую твердость. Эти особенности никелевого аустенита обусловливают хорошую обрабатываемость сварных соединений чугуна и стойкость против образования трещин.  [c.316]

Сварочный нагрев и последующее охлаждение настолько изменяют структуру и свойства чугуна в зоне расплавления п около-пювной зоне, что получить сварные соединения без дефектов с необходимым уровнем свойств оказывается весьма затруднительно. В связи с этим чугун относится к материалам, облада-10ш,им плохой технологической свариваемостью. Тем не менее сварка чугуна нмеет очень большое распространение как средство исправления брака чугунного литья, ремонта чугунных изделий, а иногда и при изготовлении конструкций. Качественно выполненное сварное соединение должно по меньп1ей мере обладать необходимым уровнем механических свойств, плотностью (непроницаемостью) и удовлетворительной обрабатываемостью (обрабатываться реягущим инструментом). В зависимости от условий работы соединения к нему могут предъявляться и другие требования (например, одноцветность, жаростойкость н др.).  [c.324]

Для оценки влияния термического цикла сварки па структуру и свойства различных зон сварного соединения рассмотрим нсев-добинарную диаграмму состояний Fe — С — Si, связав ее с распределением температур в шве и околошовной зоне (рис. 152). Шов представляет собой металл, полностью расплавлявшийся. В зависимости от скорости охлаждения структура его будет представлять собой белый или серый чугун, с различным количеством структурно-свободного углерода.  [c.325]

Коэффициент затухания 5 в значительной степени зависит от отношения средней величины зерна d в металле и длины акустической волны X. Чем больше отношете к/d, тем меньше коэффициент затухания. Коэффициент затухания обратно пропорционален частоте/(так как к = С//). Короткие волны большой частоты легко затухают, отражаясь от границ зерен кристаллов. Для малоуглеродистых сталей X/d > 10, затухание мало и возможно применение ультразвуковых волн для контроля. При k/(i< 10 затухание происходит наиболее интенсивно. В деталях, выполненных электро-шлаковой сваркой, в сварных соединениях из аустенитиых сталей, меди, чугуна, где структура крупнозер1шстая, ультразвуковой контроль затруднен, так как длина волны сопоставима с величиной среднего зерна. В алюминиевых и титановых сплавах контроль УЗК не вызывает затруднений.  [c.170]

Применяют также механизированную сварку порошковой проволокой, обеспечивающей состав и структуру чугуна в шве. Сваренные детали охлаждают вместе с печью. При горячей сварке чугуна получают сварное соединение без твердых отбеленных и закаленных участков. Однако горячая сварка - дорогой и трудоемкий процесс его применяют для ремонта уникальных деталей. Горячую сварку также выполняют науглероживающим газовым пламенем с флюсом на основе буры (Na2B407).  [c.278]

Хорошие литейные свойства чугуна, простота и невысокая стоимость изготовления изделий из него, износостойкость, надежная работа в условиях повышенныхтем-аератур и знакопеременных нагрузок позволяют широко использовать чугун в качестве конструкционного материала. Однако выпускаемые в настоящее время чугуны характеризуются пониженной свариваемостью, обусловленной повышенной склонностью к образованию трещин из-за низкой его прочности и пластичности и образования хрупких структур при сварке в металле шва и околошовной зоны при повышенных скоростях охлаждения. Трещины в металле сварного соединения могут возникнуть от неравномерного нагрева и охлаждения, которые характерны для термического цикла сварки, литейной усадки металла шва, жесткости свариваемых изделий. Наиболее широко распространены и хорошо разработаны процессы сварки деталей из серного чугуна. Существуют три основных, наиболее распространенных способа сварки чугуна с предварительным нагревом (горячая сварка), без предварительного нагрева (холодная сварка), пайкосварка.  [c.130]

В процессе сварки необходимо применять флюс в виде технической безводной прокаленной буры и флюс, состоящий пз 23% технической прокаленной буры, 27% соды и 50% азотнокислого натрня. Правильно выполненное сварное соединение обладает механическими свойствами, структурой и химнческим составом, свойственными серым литейным чугунам. По производительности способ  [c.290]

Сварное соединенпе чугуна, выполненное медно-железным электродом, представляет собой механическую смесь меди п железоуглеродистого сплава, соединенных с основным металлом общими кристаллами стали, а также путем частично диффузии меди в микропоры чугуна. Такой характер соединенпя определяется тем, что медь и железо практически взаимно нерастворимы. Теоретически растворимость меди в железе равняется 0,1%. Структура металла шва представляет собой двухфазную систему, состоящую из железоуглеродистого сплава, насыщенного медью, и медной составляющы" . Обрабатывае.мость шва зависит от соотношения меди и железа в электроде. С увеличением содержания железа растет количество углерода, диффундирующего из расплавленного чугуна п способствующего повышению твердости металла шва.  [c.296]

Температура предварительного нагрева определяется размерами детали, жесткостью конструкции, толщиной стенок, объемом наплавляемого металла и структурой чугуна. Для большинства деталей нагрев до 400—450° С обеспечивает получение обрабатываемого сварного соединения и создает условия, исклю-чаюш 1е образование трещин. В ряде случаев при сварке сложных деталей температура должна быть повышена до 550—600° С.  [c.64]

Вследствие быстрого охлаждения образуются твердые переходные зоны, состоящие из цементита, мартенсита, троостита, белого чугуна и других структур, содержащих карбид. Закаленные зоны увеличивают хрупкость, снижают прочность сварного соединения и лишают возможности обработки его обычным режущим интрументом.  [c.539]

Для улучшения процесса сварки необходимо применять флюс, состоящий из технической безводной буры (Ыа.,В407), прокаленной при температуре около 400 и растертой в порошок. Хорошие результаты дает флюс, состоящий из 23% технической прокаленной буры 27%. соды (СэзСОз) и 50% азотнокислого натрия (ЫаЫОз). Правильно выполненное сварное соединение обладает механическими свойствами, структурой и химическим составом, свойственным серым литейным чугунам Технологические особенности процесса сварщику необходимо применять защитный шлем, а не щиток, для того чтобы были свободны обе руки. Манипулирование дугой для подогрева детали следует выполнять очень осторожно, чтобы не оплавить поверхности. При введении в дуговое пространство присадочного стержня следует избегать прикосновения его к угольному электроду. По производительности способ равноценен газовой сварке по стоимости несколько дешевле.  [c.541]


Стальными электродами со специальным покрытием сваоиваются изделия несложной формы, средних размеров и веса, с толщиной стенок до 15 мм, не работающие при значительных статических и ударных нагрузках. Сварное соединение неоднородно по структуре, однако металл сварного шва по составу и свойствам достаточно близок к серому чугуну. При правильном и достаточно тщательном выполнении сварки можно получить плотное соединение, поддающееся обработке режущим инструментом. Данный метод сварки может также широко применяться при заварке литейных дефектов с небольшим объемом на>плавки.  [c.561]

Сварка стальными электродами применяется ограниченно ввиду трудности получения сварного соединения без отбеливания и образования трещин. Такой способ сварки применяют для заварки дефектов отливок и ремонта чугунных деталей неответственного назначения. Лучщие результаты достигаются при использовании электродов марки ЦЧ-4 с карбидообразующими элементами в покрытии, в частности до 70 % ванадия. Ванадий, поступающий в шов, связывает углерод основного металла в мелкодисперсные карбиды ванадия, в результате чего структура шва получается ферритной с включением карбидов ванадия, которого в шве оказывается 9—10%. Углерод шва, таким образом, не влияет на образование цементита, так как почти целиком используется для образования карбида ванадия, и отбеливания не происходит. Возможна обработка режущим инструментом.  [c.244]

При сварке серого чугуна имеет место интенсивное выгорание графитообразующих компонентов (углерода и кре.мпия). Чтобы не получить в сварном соединении структуры отбеленного чугуна, рекомендуется прихменять присадочные прутки с суммарным содержанием крелшия и углерода 6,5—7,5%.  [c.152]


Смотреть страницы где упоминается термин Структура сварных соединений чугуна : [c.66]    [c.234]    [c.30]    [c.298]    [c.299]    [c.463]    [c.513]   
Смотреть главы в:

Атлас структур сварных соединений  -> Структура сварных соединений чугуна



ПОИСК



Соединения чугунных

Структура сварных соединений



© 2025 Mash-xxl.info Реклама на сайте