Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции со стандартными трещинами

На образцах ДКБ могут быть сделаны измерения скорости роста коррозионной трещины как функции коэффициента интенсивности напряжений в вершине трещины. Таким образом, в то время как гладкие образцы не могут быть использованы для определения времени до разрушения конструкций с трещиной (дефектом) или для расчета нагрузок, ниже которых конструкции с трещиной не будут разрушаться за данный промежуток времени, образцы с трещиной могут быть использованы для этих целей. Это не значит, что образцы с трещиной должны заменить все гладкие образцы при испытаниях на КР алюминиевых сплавов. Более того, такие данные, полученные на образцах с трещиной, являются ценным дополнительным материалом к пороговому значению, определенному на гладких образцах, аналогично тому как данные по росту усталостной трещины являются важным дополнением к стандартной усталостной кривой 5—N для различных сплавов [70]. И подобно данным по росту усталостной трещины, данные по росту реальной коррозионной трещины могут быть полезными для установления интервалов технического осмотра и для контроля за изменением состояния конструкций. Кроме того, значения /Сщр могут быть использованы для установления нагрузок, которые гарантируют безопасность конструкций, имеющих необнаруженные трещины (дефекты) в коррозионной среде в течение расчетного срока службы. Специальные примеры по реальному использованию данных по образцам с трещиной (скорость и Кщр) даны ниже (см. п. 5).  [c.185]


КОНСТРУКЦИИ со СТАНДАРТНЫМИ ТРЕЩИНАМИ  [c.285]

Таким образом, предельное состояние элемента конструкции с усталостной трещиной в эксплуатации достигается при некотором уровне эквивалентной вязкости разрушения материала. В результате этого предельная длина трещины может быть отлична от той, что соответствует стандартным условиям испытаний материала. Это отличие полностью определяется величинами поправочных функций на реализуемые условия нагружения. Введение представления об эквивалентных характеристиках материала для описания его поведения в условиях эксплуатации позволяет после разрушения элемента конструкции проводить оценку значимости факторов эксплуатационного воздействия на материал в момент его разрушения.  [c.118]

Скорость роста длинных усталостных трещин зависит от коэффициента интенсивности напряжения (КИН), и между ними установлена S-образная зависимость при неизменном уровне напряжения, которая аналогична зависимости, представленной на рис. 3.1а. Вид и положение кинетической кривой существенно зависят от условий нагружения и геометрии детали. Поэтому далее, рассматривая процесс развития разрушения, мы будем разделять нагружение материала (образец) в тестовых условиях и при многопараметрическом воздействии на деталь в лаборатории, на стенде или в эксплуатации. Тестовые условия используют для определения механических характеристик материала, когда применительно к испытаниям стандартных образцов оговорены их размеры, частота нагружения, температура, степень агрессивного воздействия окружающей среды и прочее. Элементы конструкций, в большинстве случаев, существенно отличаются по геометрии от стандартных образцов, и условия их нагружения, как правило, не соответствуют тестовым условиям опыта.  [c.132]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]


Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

После сложения энергии всех трещинных элементов с энергией элементов, моделирующих оставшуюся часть конструкции, получаем глобальную энергию, которая становится функцией глобальных перемещений узлов и одновременно коэффициентов интенсивности напряжений каждого из трещинных элементов. Алгебраические уравнения, описывающие как узловые перемещения, так и коэффициенты К всех сингулярных элементов, получают непосредственно из условия минимума глобальной энергии. С другой стороны, существует возможность исключить те коэффициенты интенсивности напряжений, которые являются общими для элементов, окружающих данный отрезок фронта трещины, и сформировать матрицу жесткости суперэлемента [16,17]. Полученный суперэлемент можно использовать в стандартных конечно-элементных программах обычным способом.  [c.193]

При этом / (<[) — непрерывно дифференцируемая функция, удовлетворяющая условиям f (4 ) >0 / (0) = 0 / (1) 1. Смысл первых двух условий очевиден, а последнее означает, что при удачно выбранной модели вычисленному значению ij = 1 должно соответствовать в среднем по одной макроскопической трещине в каждом образце из достаточно представительной выборки. Отсюда следует, что эталонный объем Vq должен иметь порядок объема стандартных образцов применительно к данному материалу и рассматриваемому классу конструкций (п наоборот). Предлагаемая модель проиллюстрирована на рис. 3.16. На рис. 3.16, а показаны зависимости изменения во времени меры повреждения г (t), математического ожидания (-4 (t) числа макроскопических трещин и одна из реализаций 112  [c.112]

Кроме того, даже докритические механические свойства зависят от объема, в котором они проявляются. Например, тот же предел текучести далеко не совпадает со стандартной величиной, если его пытаться определять в малых объемах деформирования, в областях высокого градиента напряженно-деформированного состояния. Кстати, градиент напряженного состояния также существенно влияет на характер распространения разрушения в виде трещины. Нри отсутствии градиента, т. е. при идеально равномерных по объему напряжениях и прочности, разделение тела на части происходит практически мгновенно, в то время как при наличии градиента (что типично для конструкционных элементов) трещина может пытаться расти довольно долго, что, вообще говоря, представляется благоприятным обстоятельством. Наконец заметим, что прочность детали пропорциональна прочности материала лишь до определенного значения предела прочности, выше которого прочность детали не повышается, а падает. Это обстоятельство хорошо известно конструкторам и входит в понятие конструкционной прочности, введенное в свое время С.В. Серенсеном [231]. Нод этим термином понимают явление, при котором прочность конструкции неоднозначно связана с механическими свойствами материала, в частности с его прочностью, и для предсказания деформационного и прочностного поведения конструкции служат интуиция и набор эмпирических правил. Все это означает, что определение напряженно-деформированного состояния совместно с некоторым набором постоянных материала еще не дает уверенности в том, что рассчитываемая деталь на практике будет вести себя именно так.  [c.15]


Эти испытания аналогичны стандартным испытаниям по Шарпи образцов с V-образным надрезом. Они отличаются тем, что об> разец имеет другую ширину (обычно соответствующую толщине материала в конструкции). В стандартном образце с V-образным надрезом имеется естественная трещина, полученная с помощью усталостных нагрузок. Образцы подвергают излому путем медленного изгиба и стандартного ударного испытания. Результаты выражают в виде удельной работы разрушения.  [c.304]

Методы механики разрушения разрабатываются с учетом двух основных допущений. Во-первых, обычно полагают, что рассматривав мые материалы обладают совершенно однородными свойствами такими, как модуль упругости Е, предел текучести или 2 менное сопротивление разрыву о , ударная вязкость а , относитель ное сужение j/, удлинение 8, и другими стандартными характеристи ками, определяемыми экспериментально на лабораторных образцах Во-вторых, допускают (и это вполне соответствует реальным уело виям), что во всех деталях и элементах конструкций в исходном состоянии уже имеются какие-то начальные несплошности или трещиноподобные дефекты, которые могут расти и развиваться в процессе эксплуатации. Таким образом, процесс разрушения в этом случае принимается многостадийным и в первом приближении определяется стадиями зарождения и распространения трещины. Термин "зарождение трещины" применяют для обозначения процесса возникновения первоначальной трещины в микроструктуре материала, в частности, из имеющихся там дефектов или каких-либо концентраторов напряжений.  [c.30]

Традиционные расчеты прочности трубопроводов и других элементов конструкций ведут в предположении, что они лишены трещин или подобных им дефектов. При этом свойства материала в конструкции тождественны свойствам материала, определенным на образцах стандартными методами. В то же время нередки случаи, особенно для крупногабаритных конструкций сложного очертания, когда в процессе изготовления конструкции вводятся начальные деформа-  [c.59]

Таким образом, введение понятия об эквивалентном напряжении, учитывающем влияние внешних условий нагружения на кинетику усталостных трещин, позволяет использовать результаты оценки трещиностойкости сплавов в условиях тестовых испытаний в качестве стандартных, эталонных—универсальных, а полученные численные характеристики, как константы материала, реализуемые в условиях автомодельности для любых видов внешних воздействий на элемент конструкции. Метод определения эквивалентного напряжения и его использование в практических целях рассмотрен в гл. V, VII.  [c.380]

Пример конструкции плавно изогнутой секции показан на рис. 17.44. Основные размеры стандартных радиусных изгибов даны в табл. 17.28. В местах изгибов должны отсутствовать гофры, вмятины, трещины. В многократно изогнутых волноводах малого сечения рекомендуется серебрить присоединительные поверхности фланцев, а внутренние поверхности покрывать лаками УР-231 или ВЛ-931.  [c.647]

Поэтому наряду со стандартными расчетами на прочность для ответственных конструкций начинают выполнять расчеты на прочность деталей с трещинами и обеспечивают условия их нераспространения. При этом возможны различные подходы  [c.191]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

Рассмотрим теперь задачу определения параметров сопротивления материала росту трещин при наличии водорода, позволяющих установить связь между поведением лабораторных образцов в процессе испытаний и поведением материалов в конструкциях при тех же условиях. Заметим, что обычные методы механики разрушения [144] при изучении водородного охрупчивания металлов не являются корректными. Так, анализируя типичные результаты опытов по оценке влияния водорода на кратковременную статическую трещиностойкость металлов [200] (рис. 41.1), нетрудно установить, что определяемый стандартным методом параметр трещиностойкости Kq, будучи весьма чувствительным к воздействию водорода [83, 2(30, 319, 334J, является лишь одним значением коэффициента К из интервала К,ь < Ксш, в кото-  [c.326]

Коэффициент пропорциональности f в экспериментах был близок единице при стандартном отклонении в определяемой величине вязкости разрушения в пределах от 3 до 7,5 %. Следовательно, между соотношениями (2.11) и (2.12) различия непринципиальны при проведении оценок вязкости разрушения или решении обратной задачи по определению уровня максимального напряжения в момент скачка трещины в плоском элементе конструкции.  [c.108]


Полученные результаты свидетельствуют, что для сварных конструкций, изготавливаемых из малоуглеродиетых и низколегированных сталей, обычные нормативные расчеты на прочность, базирующиеся на характеристиках механических свойств, получаемых при стандартных испытаниях, не исключают возможности разрушения элементов конструкций вследствие развития слоистых трещин. В этих случаях должны проводиться уточненные расчетные оценки с позиций механики разрушения, что вызывает необходи-моеть проведения дополнительных механических испытаний. С другой стороны, сложность испытаний на трещиностойкость в 2-на-правлении не позволяет надеяться, что данные испытания могут быть рекомендованы для широкого применения при сертификации сталей по склонности к СР. Однако при создании сварных конструкций повышенной ответственности должны быть проведены контрольные испытания по определению характеристик трещиностой-кости в 2-направления. Предельно допускаемые значения характе-  [c.105]

Традиционные расчеты прочности элементов конструкций и сооружений ведут в предположении, что они лигиены трещин или подобных им дефектов. При этом свойства материала в конструкции тождественны свойствам материала, определенным на образцах стандартными методами. В то же время нередки случаи, особенно для крупногабаритных конструкций сложного очертания, когда в процессе изготовления конструкции вводятся начальные деформации и возникают трещины на том или ином технологическом этапе. Кроме того трещины могут возникнуть в процессе эксплуатации, особенно в зонах повыгиенных напряжений и деформаций, из-за периодической во времени переменности нагрузки, агрессивного характера окружающей среды и других, не заложенных в расчет, факторов, повыгиающих склонность конструкции к хрупкому состоянию.  [c.85]

Раскрытие трещины и общий механизм хрупкого разрушения. Трудность применения метода линейной механики разрушения к сравнительно вязким конструкционным сталям низкой и средней прочности объясняется тем, что в этих случаях разрушение может быть связано со значительной локальной пластичностью. В таких материалах во время испытания образцов стандартных размеров с надрезом при нормальных скоростях деформации перед разрушением впереди напряженной трещины может распространяться пластическая зона. Вследствие этого невозможно проанализировать упругое напряженное состояние и вычислить показатель вязкости разрушения Кс- Уэллс (1969 г.) разработал метод, приняв, что неустойчивое распространение дефекта происходит при его критическом раскрытии около вершины (критическое раскрытие трещины или OD). Он предполагал, что это значение одинаково для реальных конструкций к образцов небольших размеров подобной толщины. Экспериментальное подтверждение было получено несколькими специалистами. Например, результаты определения разрушающих напряжений для охрупченных труб высокого давления из сплава циркония хорошо согласовывались с данными испытаний на изгиб образцов небольших размеров с надрезом для исследования критического раскрытия трещины (Фернихауф и Уоткинс, 1968 г.). Хорошее соответствие наблюдалось между поведением материалов при инициирующих испытаниях широкого листа и на изгиб образцов натурной толщины для выявления величины критического раскрытия трещины (Бурде-кин и Стоун, 1966 г.). В условиях малой пластической деформации можно показать, что усилие распространения трещины G есть произведение предела текучести Оу и критического раскрытия трещины б  [c.236]

В монографии термин "трещиностойкость имеет широкий смысл, включающий способность металлических изделий и конструкций сопротивляться развитию трещин при статическом, циклическом и динамическом нагружении, П чем в ряде случаев с учетом возможного влияния коррозионной среды и температуры. На ряде примеров показано, что вновь разрабать1ваемые методы определения характеристик трещи-ностойкости являются развитием и совершенствованием существующих стандартных методов испытаний. В этом проявляются взаимосвязь и преемственность существующих с вновь разрабатываемыми методами испытаний по определению характеристик механических свойств металлов. (  [c.5]

Для подтверждения критериальных характеристик прочности, ресурса и трещиностойкости проводят комплекс аттестационных испытаний на стандартных, унифицированных или специальных лабораторных образцах. В тех случаях, когда создаются новые и ответственные конструкции, проводят испытания моделей с доведением их до предельного состояния (развитие недопустимой деформации, вязкое или хрупкое разрушение, образование и развитие трещин). При этом широко используют методы и средства дефектоскопии — ультразвуковой, рентгеновской, оптической, акустической и акустоэмис-сионой, электромагнитной, термовизионной, голографической.  [c.102]

В данной статье показаны возможности инженерного решения проблемы остановки трещин в конструкциях. Разра ботаны методы для измерения величин трещиностойкости, которые управляют процессом остановки трещины в толстостенных элементах конструкций. Для большого класса конструкций могут быть проанализированы пути применения этих величин трещиностойкости — как на основе динамического, так и на основе более приближенного, статического, подходов. Такие возможности существуют сейчас в основном для условий линейно-упругого деформирования, соответствующих плоской деформации. Для решения практических задач об остановке трещины при высоких напряжениях, распространение которой сопровождается большой пластической деформацией, необходимы дополнительные исследования. Они включают изучение пластического поведения материала и его взаимодействия с трещиной в течение коротких промежутков времени при высоких скоростях деформирования, типичных для быстрого роста и остановки трещины. Необходимы также методы анализа остановки трещины при смешанном разрушении и разрушений полностью путем среза. Исследования корреляций с результатами стандартных испытаний, таких, как испытания по Шарпи, испытания падающим грузом и обычные испытания для определения трещиностойкости, могут со временем облегчить задачу оценки трещиностойкости по отношению к остановке.  [c.248]

В последние годы возникла необходимость проводить усталостные испытания на базах испытания, превышающих 10 -10 циклов нагружения (гигаусталость) [29-31], как это предусмотрено ГОСТом 25.502-79. Это связано с тем, что ресурс нагружения многих ответственных конструкций, работающих в режиме циклических нагрузок, превышает стандартные базы усталостных испытаний. Проведение таких испытаний выявило интересную особенность. Металлические материалы, у которых при стандартных базах испытания наблюдался физический предел вьшосливости, вдруг начинают разрушаться после прохождения 10 -10 циклов и возникает как бы вторая ветвь многоцикловой усталости и длинная ступенька между этими двумя ветвями. При этом на больших базах испытаний на усталость (больших 10 циклов нагружения) трещины почти всегда зарождаются не на поверхности, как это обычно наблюдается при многоцикловой усталости, а под поверхностным слоем. На рис. 1.22 представлены результаты усталостных испытаний в условиях симметричного растяжения-сжатия с частотой 20 КГц образцов из высокопрочных пружинных сталей Сг-81 и высокопрочных легированных сталей типа 42СгМо4 [32]. Видно, что во всех случаях у кривых усталости имеются две ветви долговечностей, между которыми существует горизонтальный участок (разрыв кривых усталости). Первая ветвь обычно оканчивается при долговечностях МО -510 , а вторая начинается после 10 циклов. Если образцы разрушались до 10 циклов, то усталостные трещины зарождались в поверхностном слое образцов. После 10 циклов зарождение трещин происходит под поверхностным слоем преимущественно у сульфидных неметаллических включений размером от 10 до 40 мкм.  [c.26]


В заключение люжно сказать, что вопрос масштабного эффекта применительно к прочности деталей п конструкций в условиях хрупкого разрушения является многосторонним. Здесь необходимо рассматривать отдельно условия образования трещины хрупкого разрушения малой протяженности и условия внезапного хрупкого разрушения детали в целом. В первом случае при уменьшенном масштабе образца оказывают существенное влияние увеличенная неравномерность распределения деформаций, напряженное состояние в детали и свойства поверхностного слоя металла. Во втором случае важную роль играет запас потенциальной энергии деформации, накопленной в детали и ухудшение характеристик материала в сечениях больших размеров, по которым происходит разрушение. С учетом этого нельзя рассчитывать на возможность охарактеризовать масштабный эффект какой-либо постоянной материала без учета формы детали и распределения напряжений в ее объеме или каким-либо коэффициентом, полученным для данной формы детали в предположении совершенно упругого материала без учета его структуры и текстуры. В зависимости от форлп детали и условий ее изготовления и эксплуатации может преобладать тот или иной из факторов, с которыми связано наличие масштабного эффекта. Конструктор может правильно использовать результаты испытаний стандартных образцов малых размеров при проектировании и расчетах деталей и конструкций больших размеров только на основании рассмотренных выше зависимостей.  [c.374]

Углеродистые и низколегированные стали. ЭШС широко применяется при изготовлении конструкций из углеродистых и низколегированных сталей. Равнопрочность сварного соединения при этом достигается легированием металла шва через электродную проволоку. Для сварки используются стандартные сварочные проволоки марок Св-08ГА, Св-10Г2, Св-08ГС и сварочные флюсы АН-8 или ОСЦ-45. Наличие марганца в составе сварочных проволок позволяет не только обеспечивать равнопрочность сварных соединений, но и, связывая серу, повышать стойкость сварных соединений к образованию горячих трещин.  [c.151]

Значительное влияние на изменение пластических свойств сварных конструкций и на их сопротивление образованию трещин оказывает температура эксплуатации изделий. Стандартные образцы из малоуглеродистой стали хорошо сохраняют свои пластические свойства при понижении температуры испытаний, однако лишь до некоторого предела. При испытании стандартных образцов из малоуглеродистых сталей хрупкое разрушение в условиях одноосно напряженного состояния наступает лишь при низкой температуре (минус 60—80°). При производстве испытаний в условиях двух-осио напряженного состояния пластические свойства ухудшд-ются, а критическая температура перехода из пластичного в хрупкое состояние повышается. Наличие концентрации напряжений может вызвать образование хрупких разрушений при еще более высоких температурах. Это подтвердили испытания, проведенные в Институте электросварки им. Е. О. Патона. На фиг. 116, —в, изображены образцы с резкими концентраторамй напряжений, расположенными на участках с высокими местными  [c.215]


Смотреть страницы где упоминается термин Конструкции со стандартными трещинами : [c.350]    [c.321]    [c.172]    [c.287]    [c.323]    [c.89]    [c.167]    [c.33]    [c.221]    [c.197]   
Смотреть главы в:

Машиностроение Энциклопедия Т I-3 Кн 2  -> Конструкции со стандартными трещинами



ПОИСК



Стандартная



© 2025 Mash-xxl.info Реклама на сайте