Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка результатов испытаний при одной температуре

Многочисленные исследования закономерностей рассеяния результатов длительных статических испытаний показали, что долговечность до разрушения или накопления заданной деформации подчиняется логарифмически нормальному закону распределения. Поэтому методика статистической обработки результатов длительных статических испытаний на долговечность подобна методике обработки результатов испытании на усталость, изложенной на с. 139—141. Необходимый объем испытаний на д. и. -ельную прочность при одном постоянном уровне напряжения и температуры определяется по методике, изложенной на с. 44—50,  [c.200]


Интервалы доверительные для математического ожидания и дисперсии 31—35 Испытания длительные статические — Обработка результатов при нескольких температурах 201—204 — Обработка результатов при одной температуре 200, 201  [c.226]

При обработке результатов испытаний на ползучесть стали 40Х получено, что а и С не зависят от напряжений и температуры (в пределах разброса данных по испытаниям при одном напряжении и температуре).  [c.10]

Существуют специальные методы для определения температур торможения движущихся трещин (при более низких температурах в ответственных конструкциях металл применять нельзя). В частности, метод Робертсона предусматривает испытание листовых образцов (рис. 5.5, а) относительно большой ширины (несколько сотен миллиметров) с натуральной толщиной металла 5. Перед разрушением образец с одной стороны подогревается, а с другой — охлаждается. Различные образцы испытывают при различных напряжениях. К образцу вначале прикладывают растягивающее напряжение а, а затем наносят удар для создания движущейся трещины. В некоторой зоне с известной температурой трещина останавливается. Простейшая обработка результатов испытания состоит в построении диаграмм, показанных на рис. 5.5, б. Точки соответствуют температуре остановки трещины. Ломаные линии делят область графика на две зоны. В левой верхней части рисунка находится область температур и уровней напряжений, где трещина распространяется. При более низких напряжениях или более  [c.163]

Параметры и функции S(e определяем путем обработки результатов испытаний на ползучесть при п температурах Г., одном для каждого значении напряжений и нескольких  [c.131]

Совместная обработка результатов исследования чугуна разных марок (в одной группе экспериментов были испытания модифицированного чугуна в условиях трехосного сжатия) показала, что формула (4.1 ) пригодна для оценки сопротивления разрушению разных партий металла при нормальной температуре,  [c.141]

При проведении этих испытаний определяют потери давления в подающем и обратном теплопроводах испытываемого участка сети. Испытания проводятся по показаниям пружинных манометров, устанавливаемых в характерных точках сети. Расход воды, циркулирующий по испытываемому участку теплопровода, должен быть постоянным, поэтому все ответвления на испытываемой магистрали должны быть отключены. Замеры расхода должны производиться по показаниям ртутных дифференциальных манометров, присоединенных к диафрагме (см. раздел 4-7). Испытания обычно производятся на холодной воде и температура ее замеряется в одной, любой точке сети. При обработке данных испытаний необходимо учитывать геодезические отметки установленных на сети манометров (см. 2-2). Геодезические отметки манометров определяются путем нивелировки или снятием показаний их при статическом состоянии воды в сети. На основании результатов испытаний  [c.315]


Источники рассеивания, связанные с различными условиями изготовления или испытания образцов. Например, даже при одновременной термообработке одной партии образцов нельзя утверждать, что все образцы этой партии подвергались нагреву и охлаждению в одинаковых условиях, так как даже в одной печи в разных ее зонах температура неодинакова. Если же образцы подвергали термообработке не одновременно, то возможность отклонений в температуре нагрева, времени выдержки, скорости охлаждения и т. д. увеличивается. Суш ест-венные различия в результатах испытания могут появляться в образцах одной партии и при механической обработке из-за различной заточки резцов и правки абразивных инструментов.  [c.36]

Температура самовоспламенения является показателем, весьма чувствительным к условиям испытания. Даже при использовании испытательных приборов одного образца получаемые данные имеют приближенное значение и могут сравниваться только между собой. На результаты испытания оказывают влияние характер нагреваемой поверхности (форма, чистота поверхности и ее обработка, теплопроводность и т. д.), количество падающей на нее жидкости (крупные или мелкие капли, туман) и характер вентиляции (ветер, конвекционные токи воздуха, движение воздуха или закрытый объем).  [c.139]

Проверку тормозов по нагреву можно проводить по тепловым характеристикам тормозов, построенным на основании данных экспериментального исследования. Тепловой характеристикой называют зависимость установившейся температуры ty нагрева поверхности трения от средней мощности торможения N p При обработке результатов эксперимента установлено, что во всех случаях использования тормозов всех типоразмеров экспериментальная зависимость достаточно точно определяется соотношением типа = тМ . Для каждого типоразмера и для каждого случая использования тормозов величины т и к имеют определенные значения. Построение тепловых характеристик позволяет в некоторой степени обобщить результаты испытаний и выявить влияние различных факторов на нагрев тормоза. Эти характеристики позволяют с достаточной степенью надежности определить установившуюся температуру и оценить надежность тормоза. Задача получения тепловых характеристик облегчается тем положением, что тормоза кранов унифицированы и, следовательно, во всех тормозах одного типоразмера значения давлений, габариты и конфигурация элементов практически одинаковы.  [c.269]

Надежная оценка возможна лишь с помощью всего комплекса критериев, но большой разброс результатов испытаний — характерная особенность покрытий. Этим обусловливается необходимость статистических методов обработки экспериментальных данных и более совершенного планирования опытов. Первые исследования такого характера уже известны. Вместо трудоемкого эмпирического метода проб и ошибок предлагается метод математического планирования эксперимента, при котором исследователь строит математическую модель, связывающую определенный параметр оптимизации с режимными факторами процесса (состав покрытия, состав газовой среды, температура, время и т. п.). Пользуясь этим методом, удалось найти оптимальные условия получения некоторых одно-, двух- и трехкомпонентных диффузионных покрытий, в результате чего их износо- и жаростойкость были повышены в 2—3 раза, а кислотостойкость в 5—10 и более раз по сравнению с достигнутым ранее средним уровнем [433].  [c.278]

Соблюдение времени нагрева и времени выдержки так же совершенно обязательно, как и соблюдение температуры и всех остальных элементов технологического процесса, записанных в технологической карте. Во многих случаях несоблюдение времени выдержки сказывается на результатах испытания деталей или инструментов, после термической обработки. Но в некоторых случаях несоблюдение времени нагрева или времени выдержки может и не сказаться-в явной форме на детали. Особенно это важно при термической обработке, связанной со снятием внутренних напряжений отпуск закаленных деталей и инструментов, процессы старения чугунных отливок, нагрев сварных конструкций. В этих случаях нельзя ограничиваться проверкой температуры подойти к прибору и посмотреть, какая в печи температура. Сварную конструкцию, скажем, можно нагреть до одной и той же температуры быстро и медленно. Показания термопары будут одинаковы в обоих случаях, но качество отжига будет резко различным в первом случае напряжения в процессе нагрева могут даже увеличиться и сварную конструкцию может повести, тогда как во втором случае — при медленном нагреве — сварная конструкция не изменит своей формы. Поэтому в таких случаях производится контроль по режиму, т. е. от контролера требуется составить протокол выполнения режима термической обработки и по температуре, и по времени.  [c.303]


О том, что концентрация напряжений, наблюдающаяся в месте перехода от шва к основному металлу, не оказывает влияния на прочность при ударе видно уже по результатам испытания сварных соединений с необработанной поверхностью швов. Разрушение их происходило по основному металлу вне зоны влияния швов. Учитывая это, испытание стыковых соединений с обработанной поверхностью швов было проведено при некотором различии в свойствах основного металла и металла швов, которое возможно и в реальных условиях. Образцы были изготовлены с применением двух различных партий электродов одной и той же марки Э-42А. Наплавленный металл первой марки электродов был несколько прочнее основного металла (в среднем а = 1,04о), тогда как наплавленный металл второй марки электродов несколько уступал по прочности основному металлу (при наибольшем отклонении в свойствах, выражающемся значением а = 0,93а ). При испытании стыковых соединений с обработкой поверхности швов оказалось, что прочность их при ударе может быть признана достаточной только при условии, если металл шва по своим исходным характеристикам является не менее прочным, чем основной металл. В тех же случаях, когда металл шва хотя бы немного уступает по прочности основному металлу (что при существующих допусках на свойства металла вполне возможно), работоспособность сварных соединений с обработанными поверхностями швов сильно снижается и может оказаться недостаточной. При этом разрушение в условиях действия низкой температуры происходит по сварным швам и характеризуется значительным снижением деформационной способности.  [c.74]

Одним из способов улучшения механических свойств тугоплавких металлов является термическая обработка в вакууме [1—4]. Имеется много данных по влиянию вакуумного отжига на температуру хрупко-пластичного перехода вольфрама, однако они весьма противоречивы [3—6]. Противоречивость данных можно объяснить как влиянием различного исходного структурного состояния и чистоты исследуемых металлов, так и различными условиями вакуумного отжига и способами оценки пластичности. Известно [1, 2], что чистота вакуума при отжиге может сильно сказываться на результатах последующих испытаний. Особенно сильное влияние могут оказывать углеродсодержащие соединения, которые, разлагаясь на поверхности образцов, могут образовывать карбиды [1].  [c.59]

Механические свойства листов установлены в зависимости от их толщины. Чем толще лист, тем медленнее происходит FO охлаждение после прокатки и при термической обработке и тем труднее поэтому при одном и том же химическом составе обеспечить высокий предел текучести. Требования по относительному удлинению листов установлены в зависимости от временного сопротивления чем оно меньше, тем выше должна быть их пластичность. По требованию заказчика может быть ограничен верхний предел временного сопротивления для стали 15К — не более 50 кГ мм и для стали 20К — не более 55 кГ мм . Заказчик может потребовать также, чтобы ударная вязкость после механического старения была не менее 50%) величин, указанных в табл. 4-1. В листах из сталей 09Г2С и 10Г2С1 гарантируется предел текучести при растяжении по результатам испытания при 320° С. Эта температура приблизительно соответствует температуре воды и насыщенного пара в барабане котла высокого давления (допускаемое напряжение в барабане определяется величиной предела текучести при рабочей температуре).  [c.107]

Максимальная длительность испытания может не превышать несколько сот часов, но на каждом уровне температуры проводятся испытания не менее, чем при четырех напряжениях. Величины напряжений следует выбирать таким образом, чтобы одно-два напряжения повторялись при каждой паре расположенных рядом температур. Сокращение числа напряжений при Г— onst до одного или двух уровней искл1бчает возможность надежного определения величины коэффициента С для исследуемого материала. В таких случаях обычно используют первое приближение величины С (например 20). На примере обработки результатов испытания на длительную прочность нимо-ника 80А показано [4], что в таких случаях возможна неопределенность при построении обобщенных параметрических графиков. На рис. 2 приведены результаты испытаний нимоника 80А, изображенные в плоскости координат P=r(20-l-lgT) — Iga. Если ограничиться испытаниями длительностью 100— 200 ч (при одном, двух напряжениях) при каждой температуре, то параметрическая зависимость будет изображаться прямой 1 при т=2000- 4000 ч и том же числе напряжений будет получена прямая 2 при т= 1400- 20 ООО ч — прямая 3 (см. рис. 2, а). Увеличение числа напряжений п (при r= onst, п 4) позволило повысить точность определения величины коэффициента (С=15) и получить единую параметрическую кривую (см. рнс. 2,6).  [c.309]

Полученные выше оценки для характерных значений времени установления температуры и скорости разрушения позволяют указать такую глубину заделки термопар А, при которой их показания с заданной точностью могут быть приняты за автомодельные или квазистацио-нарные температуры. Этот вопрос непосредственно связан с методикой обработки результатов стендовых испытаний с целью определения теплофизических характеристик материала. Как показано ранее, использование автомодельного или квазистационарного режима прогрева позволяет избежать трудоемкой процедуры численного интегрирования уравнения теплопроводности и одновременно дает возможность установить зависимость температуры от координаты по известной зависимости температуры от времени в одной фиксированной точке тела. Именно этим объясняется то, что оба указанных режима широко используются при экспериментальных исследованиях новых рецептур теплозащитных покрытий, для которых отсутствуют данные по теплофизическим свойствам.  [c.73]


В реальных условиях эксплуатации гидравлических систем возможна конденсация влаги при самом различном сочетании условий, в связи с чем Роденом [ПО] была сконструирована аппаратура, позволяющая в широких пределах регулировать и варьировать интенсивность конденсации влаги, при испытании. При этом испытательный образец представляет собой трубку из темно-серого чугуна длиной 152,4 мм и диаметром 19 мм, закрытую с одной стороны резиновой пробкой. К другому ее концу подведены патрубки, обеспечивающие циркуляцию через трубку дистиллированной воды, температура которой регулируется таким образом, испытание проводят в заданных температурных условиях. Образец с патрубками устанавливают в держатель, который служит одновременно футляром для трубки с дистиллированной водой. Всю конструкцию помещают в баню, при помощи которой регулируется температура воды и, таким образом, влажность воздуха над поверхностью воды. Изменяя температуру бани и циркулирующей воды, можно получать различные скорости конденсации. При использовании этого метода испытания достигается лучшая воспроизводимость результатов, чем при испытании в обычной камере влажности, поскольку в этом случае можно поддерживать выбранную скорость конденсации влаги. Длительность испытания при использовании закрытого сосуда в 4—6 раз меньше, чем при использовании камеры (в зависимости от подготовки образца и чистоты обработки поверхности).  [c.128]

Для проверки корректности гипотезы линейного суммирования повреждений в случае циклически меняющихся температур были проведены испытания при разных законах изменения температуры в цикле (прямоугольном, треугольном, трапецеидальном). При длительностях порядка 2—4 тыс. ч испытанные материалы в условиях заданных режимов можно считать структурностабильными. Каждая группа образцов изготавливалась из материала одной плавки, имела стабильную термическую обработку. Для получения средних значений долговечности на каждом режиме испытывали 5—8 образцов. Результаты испытаний и их сопоставления с расчетными данными иллюстрирует рис. АЗ.20, на котором представлены кривые длительной прочности при циклически (а—Ь) изменяющихся температурах. Здесь же для сравнения представлены кривые, полученные при постоянных Значениях температуры, в том числе равных максимальным в рассматриваемых циклах. Режимы испытаний поясняет табл. А3.11.  [c.95]

Известно, что НТМО не приводит к заметному подавлению хрупкости стали [108], в то время как ВТМО позволяет резко ослабить проявление отпускной хрупкости в опасном интервале температур отпуска [16, 70, 88, 89] и повысить ударную вязкость при комнатной и низких температурах [16, 70, 77, 88, 89, 90, 92]. В связи с этим значительный интерес представляет комбинированное применение ВТМО и НТМО, причем ВТМО должна привести к подавлению охрупчивания стали при отпуске, а НТМО — резко поднять предел прочности и твердости стали. Совместное применение ВТМО и НТМО было исследовано В. Д. Садовским и др. [108]. Часть образцов стали 37ХНЗА подвергали упрочнению методом НТМО (нагрев до 1150 " подстуживание до БЗО деформация 60% ковкой закалка-f отпуск), другую часть упрочняли по обычному режиму ВТМО (нагрев до 1150° деформация 30% при 900° закалка-f отпуск), а третью партию подвергали комбинированной термомеханической обработке вначале образцы проходили ВТМО, а затем НТМО по указанным выше режимам. Результаты ударных испытаний стали, подвергнутой такой обработке, показали, что совмещение на одном и том же объекте процессов ВТМО и НТМО значительно повышает ударную вязкость в зоне развития обратимой хрупкости и одновременно увеличивает твердость стали.  [c.74]

В зависимости от исходной структуры и режимов упрочнения толщина этой зоны может доходить при обработке деталей вращения до 0,3 мм. Впервые светлая полоска была обнаружена В. П. Кравз-Тарновским при испытании стальных образцов на удар. Н. Н. Давиденков [17] и И. Н. Мнролюбов объясняют эффект Кравз-Тарновского тем, что в результате местной деформации по одной плоскости сдвига происходит разрушение и измельчение вещества. При очень быстром скольжении благодаря сильному трению сначала образуется большое количество теплоты, которое затем с чрезвычайно высокой скоростью отдается основной массе образца. Поэтому в местах локализации деформации, где температура, вероятно, выходит за критическую точку, происходит сначала аустенитное превращение, а затем интенсивная закалка. Вещество прослойки находится в состоянии мартенсита, который не имеет характерной игольчатой структуры, так как оно образовалось в особых и еще малоизучен-  [c.21]

Патент США, N 3989636, 1976 г. Предлагается сополимер эпигалогенгидрина с аминокислотами, обладающий хорошими хелатными свойствами. Композиция эффективна при вь]сокой температуре в течение продолжительного периода и поэтому используется при обработке кипящей воды. Композиция уменьшает жесткость воды, уменьшает количество осадка, образующегося при кипячении, а также подавляет коррозию. Общая методика испытания и результаты при использовании одного такого сополимера описаны ниже.  [c.39]

Интересные качественные результаты по низкотемпературным испытаниям некоторых малоуглеродистых и низколегированных сталей при плоском напряженном состоянии получены в работах [14, 292, 558, 576, 577, 578]. Однако данные этих испытаний не позволяют делать количественные оценки критериев низкотемпературной прочности материалов при сложном напряженнол состоянии. Ниже, по данным работ, выполненных в Институте проблем прочности АН УССР, дается анализ влияния температуры на предельное состояние текучести и разрушения трех сталей с различным содержанием углерода (0,53 0,37 0,05%). Вопросы, связанные с технологией обработки двух первых сталей, освеш ены в гл. X. Образцы из малоуглеродистой стали (С—0,05%) были изготовлены из прутков диаметром 30 мм одной плавки и подвергнуты огжигу в вакууме порядка мм рт. ст. при температуре 1280° С в течение четырех часов охлаждение — вместе с печью.  [c.347]


Смотреть страницы где упоминается термин Обработка результатов испытаний при одной температуре : [c.200]    [c.69]    [c.58]    [c.68]    [c.209]   
Смотреть главы в:

Статистические методы обработки результатов механических испытаний  -> Обработка результатов испытаний при одной температуре



ПОИСК



Испытание обработка результатов

Обработка результатов

Результаты испытаний

Температура испытаний



© 2025 Mash-xxl.info Реклама на сайте