Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переход в пассивное состояние

При исследовании поведения материалов, которые могут находиться в пассивном или активном состояниях в исследуемых средах, предпочтение отдают исходной поверхности образцов в активном состоянии, так как это дает возможность определить скорость коррозионного процесса в условиях активного растворения или наблюдать переход в пассивное состояние. При сравнительных испытаниях большого числа образцов различных материалов поверхности образцов лучше обрабатывать одним способом. При этом поверхность образцов защищают наждачной бумагой № 3 до получения однородной поверхности, а затем карандашной резинкой. После этого образцы промывают в ацетоне или спирте для удаления следов грязи или жира, которые могут препятствовать равномерному контакту поверхности образцов со средой.  [c.81]


Подобный характер кривых присущ тем металлам, которые способны переходить в пассивное состояние и отчетливо проявляется лишь при применении потенциостатического или потенциодинамического способов снятия поляризационных зависимостей. Механизм ингибирования, рассматриваемый далее, справедлив только для металлов, способных переходить в пассивное состояние.  [c.49]

На рис. 7 показано изменение скорости коррозии низколегированной стали, содержащей 2—2,5% Сг, в дважды дистиллированной воде (pH 5,5—6) при температуре 300 °С при увеличении концентрации растворенного кислорода [19]. При низких концентрациях кислорода скорость коррозии стали возрастает (активное состояние), а затем при концентрации кислорода больше 1,6 г/л сталь переходит в пассивное состояние и скорость коррозии резко снижается. При дальнейшем повышении концентрации скорость коррозии остается постоянной.  [c.29]

Коррозионная стойкость подобных сталей обеспечивается прежде всего высоким содержанием хрома, который способствует иг переходу в пассивное состояние. Минимальное количество хрома,, необходимое для достижения пассивности, составляет 12% в а-или Y-твердом растворе железа. Однако в это количество нельзя включать хром, химически связанный в карбидах, нитридах и т.д. При введении других легирующих добавок, например никеля, молибдена, меди и др., достигается повышение технологических свойств стали, а также защитных свойств как в пассивном, так и в активном состоянии.  [c.31]

ПЕРЕХОД В ПАССИВНОЕ СОСТОЯНИЕ  [c.14]

Рис. 1.2. Анодная потенциостатическая кривая для металла, склонного переходить в пассивное состояние (обозначения см. в тексте) Рис. 1.2. <a href="/info/138136">Анодная потенциостатическая кривая</a> для металла, склонного переходить в <a href="/info/183900">пассивное состояние</a> (обозначения см. в тексте)
Преимущественный контроль скоростью катодной реакции характерен для коррозии металлов в кислых средах, в нейтральных электролитах и атмосферных условиях, а также для коррозии амфотерных металлов в щелочных средах. Контроль скоростью протекания анодной реакции характерен для металлов, способных переходить в пассивное состояние. Смешанный контроль — контроль скоростями обеих реакций — наиболее распространен в практике и встречается в различных условиях, например при коррозии алюминия в нейтральных электролитах.  [c.17]


Переход в пассивное состояние хромистых и хромоникелевых сталей в большинстве случаев сказывается на их электродном потенциале, который становится более электроположительным [14]. Для объяснения явления пассивности нержавеющих сталей выдвигалось большое количество теорий, однако наибольшее распространение из них получила теория оксидных пленок [1, 2]. Из других теорий, объясняющих пассивное состояние металла, следует отметить теорию адсорбции.  [c.61]

В активном состоянии приводит к уменьшению скорости коррозии железа (см. табл. 111-1). С увеличением интенсивности размешивания среды увеличивается подвод кислорода к поверхности металла за счет диффузии. Это обстоятельство приводит к увеличению эффективности катодного процесса и соответственно к возрастанию скорости коррозии. При достаточно интенсивном размешивании раствора или значительном увеличении концентрации кие-лорода в коррозионной среде, катодный процесс может контролироваться уже не эффективностью диффузии, а скоростью реакции ионизации кислорода, которая возрастает с увеличением его концентрации. Если концентрация кислорода в растворе такова, что достигается потенциал пассивации, железо переходит в пассивное состояние, и скорость коррозии его уменьшается. При температуре 300° С и смещении потенциала железного электрода в отрицательную сторону на 10—20 же скорость катодного процесса ионизации кислорода возрастает на 2—3 порядка. С увеличением  [c.97]

Переходу в пассивное состояние обычно способствуют окислительные среды, а некоторые металлы пассивируются кислородом воздуха, растворенным в среде. Изменение внешних факторов (концентрации среды, температуры и др.) может способствовать или препятствовать возникновению пассивного состояния. Депассивацию облегчают восстановительные процессы, механическое нарушение защитного слоя, действие некоторых активных ионов, повышение температуры и т. д.  [c.253]

К коррозионностойким относятся стали с содержанием хрома не менее 12 %. В окислительных средах они переходят в пассивное состояние, сопровождающееся повышением электродного потенциала (рис. 1.1) и уменьшением скорости коррозии [1.1, 1.2]. В зависимости от легирования коррозионностойкие стали подразделяются на хромистые и хромоникелевые. Хромоникелевые  [c.10]

В случае однофазного материала, например чистого металла или однородного твердого раствора, коррозия распространяется равномерно по всей поверхности детали — происходит так называемая общая или равномерная коррозия (рис. 10.3, а). Большинство коррозионно-стойких сталей хорошо сопротивляются равномерной коррозии в агрессивных средах. Высокая устойчивость сталей обусловлена их пассивным состоянием. Переход в пассивное состояние происходит самопроизвольно и связан с образованием на поверхности защитного субмикроскопического слоя с более высоким электродным потенциалом. Слой представляет собой сложный комплекс гидрооксидов. Состоянию пассивности способствует химическая устойчивость слоя в данном электролите и низкая проницаемость слоя для ионов.  [c.490]

Способностью переходить в пассивное состояние обладают многие промышленные сплавы. Для большинства металлов пассивность наступает в окислительных (кислородсодержащих) средах и даже самопроизвольно на воздухе.  [c.475]

Алюминий во влажной атмосфере, окислительных и органических кислотах обладает высокой коррозионной стойкостью, что связано с его переходом в пассивное состояние. Однако в щелочах он корродирует с большой скоростью.  [c.476]

При катодной поляризации металлу можно сообщить такой отрицательный потенциал, при котором окисление его становится термодинамически маловероятным. Анодная поляризация с целью снижения коррозии имеет смысл только для металлов, склонных к переходу в пассивное состояние, определяемое как состояние повышенной коррозионной стойкости металла или сплава (в условиях, при которых они являются термодинамически вполне реакционноспособными), вызванное преимущественным торможением анодного процесса.  [c.9]


Изучение анодного поведения металлов в присутствии окислителей показывает, что они способствуют сильной анодной поляризации и резко уменьшают критическую плотность тока, при которой металл переходит в пассивное состояние.  [c.75]

Обращает на себя внимание, однако, одна интересная особенность. Оказывается, что с помощью достаточных концентраций нитрита натрия можно запассивировать сталь и в кислых электролитах, в которых стабильность фазовых пленок низка. На рис. 2,3 представлен ряд потенциодинамических кривых, полученных в кислом буферном электролите (pH=2), в котором концентрация нитрита натрия непрерывно менялась. По мере увеличения концентрации нитрита натрия в буферном электролите пассивация стали облегчается потенциал пассивации смещается в отрицательную сторону, а токи пассивации падают. При концентрации нитрита натрия 0,15 н. ток пассивации снижается с 20 мА/см в чистом буферном электролите до 6 мА/см , а потенциал пассивации— с +1,1 В до +0,05 В. Если же довести концентрацию нитрита натрия до 0,25 н., сталь переходит в пассивное состояние, на что указывает значение стационарного потенциала Шст = +0,33 В).  [c.35]

Метод химической пассивации позволяет получать для металлов, склонных переходить в пассивное состояние, такие же поляризационные диаграммы, которые получаются при внешней анодной поляризации. Эти диаграммы имеют участки, характерные для активного растворения, активно-пассивного состояния и пассивного состояния. На рис. 2,18 представлены кривые зависимости скорости коррозии стали от потенциала, который задавался электроду с помощью различных концентраций едкого натра, силиката, фосфата и пербората натрия. Как видно, закономерность получается такая же, как и при внешней анодной поляризации. В начале диаграммы имеется активная область растворения, в которой смещение потенциала в положительную сторону приводит к увеличению скорости растворения. После достижения определенного потенциала, который назовем потенциалом частичной пассивации, скорость растворения начинает падать. Полная пассивация наступает в присутствии этих ингибиторов практически при одинаковых значениях потенциала (- -0,2-f-+0,25 В).  [c.55]

Металл переходит в пассивное состояние, как правило, при контакте с сильными окислителями (кислород, пероксид водорода, ионы хромата, дихромата, перманганата МпО "- л др.). Однако для некоторых металлов (и сплавов на их основе лапример, Ti, А1) даже вода может служить сильным окислителем.  [c.90]

Переход в пассивное состояние характерен для Сг, N1, Т1. А1, иногда Fe и других металлов, а такхе сплавов на их основе.  [c.90]

В известных случаях в гетерогенных системах в формировании адсорбционного защитного слоя могут участвовать и некоторые компоненты среды. Так, например, в гетерогенной системе нефть — вода на поверхности контактирующего с ней металла могут образовываться более сложные слои типа сэндвича , где одной обкладкой служит металл, другой — углеводородный слой, а между ними находится соответствующим образом ориентированный ингибитор. Такая двухслойная пленка обеспечивает более полную защиту металла, чем один слой ингибитора. Ни в одном из рассмотренных случаев защита от коррозии не связана с образованием поверхностного слоя оксида или гидроксила и с последующим переходом металла в пассивное состояние. Адсорбционные ингибиторы могут поэтому применяться для защиты любых металлов, как пассивирующихся, так и не способных переходить в пассивное состояние.  [c.41]

Изменение этих величин возможно за счет изменения состава сплава (очистка от примесей, вызывающих по каким-то причинам усиление коррозии, легирование). Уменьи1ение содержания углерода в коррозионностойких сталях приводит к уменьшению возможности выпадения карбидов хрома по границам зерен при отжиге, что позволяет избежать межкристаллитной коррозии коррозионноотойких сталей [31 ]. Уменьшение концентрации примесей фосфора также приводит к снижению межкристаллитной коррозии коррозионностойких сталей [37]. Наличие примесей в техническом магнии и алюминии, повышающих скорость катодного процесса, приводит к тому, что указанные металлы в морской воде находятся в состоянии пробоя. Очистка металлов от примесей вызывает снижение скорости катодного процесса — магний и алюминий переходят в пассивное состояние [17].  [c.46]

Важнейшими характеристиками склонности металлов к переходу в пассивное состояние являются потенциал пассивации и критический ток пассивацииг р (рис. 1).  [c.14]

Склонность железа [92], хрома [ 93] и никеля [40,94,96] к переходу в пассивное состояние существенно зависит от их кристаллографической структуры. Так, потенциал пассивации никеля, полученного методом вакуумного электроннолучевого рафинирования, имеет различные значения в зависимости от термической обработки никеля [95]. Отожженный при 750 никель характеризуется более положительным потенциалом пассивации в серной кислоте по сравнению с деформированным. Термическая обработка существенно сказывается и на пасси-вационных свойствах сплавов Ре—Сг и Ре—Сг—N1 [55]  [c.20]

Особый интерес представляет применение благородных металлов платиновой группы при так называемом катодном легировании сталей, разработанном группой ученых АН СССР. Сущность катодного легирования заключается в повышении эффективности катодных процессов в пассивирующихся системах, в результате чего потенциал системы смещается в сторону положительных значений и она переходит в пассивное состояние. В качестве катодных легирующих добавок применяют небольшие количества (0,1—0,5%) палладия, платины, рутения и др.  [c.149]


Обобщенная анодная кривая для металла, способного переходить в пассивное состояние, схематично представлена на рис. 1.2. На этой кривой имеются характерные точки фа — равновесный потенциал анодной реакции в данном электролите фст — стационарный потенциал металла в данной среде (потенциал коррозии) фп—потенциал пассивации ф пп ПОТСНЦИЭЛ ПОЛНОЙ ПЗС" сивацин inn — плотность тока пассивации U — плотность тока полной пассивации t,r — ток коррозии.  [c.14]

Соотношение фосфата цинка и хромовокислого гуанидина со-х тавляло 75 1. Поскольку фосфат цинка содержит мало водорастворимых солей, исследования проводили не в водных вытяжках, а в водных суспензиях при перемешивании. Оказалось, что в водной суспензии фосфата цинка сталь не переходит в пассивное состояние (рис. 9.14), а в суспензии, содержащей фосфат цинка и хромовокислый гуанидин (75 1), она переходит в пассивное состояние уже при потенциале 0,1 В. Емкость электрода в этом случае сильно снижается. Эти результаты полностью подтвердились при испытании покрытия на основе грунтовки ГФ-0119, где вместо хро-матных пигментов применяли фосфат цинка с малой добавкой хромовокислого гуанидина. Иключение из рецептуры хроматных пигментов позволило значительно снизить токсичность грунтовки при сохранении ее высоких защитных свойств.  [c.183]

Легирование титана компонентами, повышающими анодную пас-сивируемость (Мо, Та, Nb, Zr, r), или катодными добавками (Pd,. Pt, Ru, Re), облегчающими переход в пассивное состояние, позволяет получить сплавы с более высокой коррозионной стойкостью в растворах кислот.  [c.76]

С увеличением концентрации раствора переход в пассивное состояние наступает при все более высоких потенциалах. Поэтому кривая АВ на рисунке, разграничивающая обе области активного и пассивного состояния, поднимается вверх и вправо. Если исходить из раствора определенного состава, то, повышая потенциал металла, можно перевести его в пассивное состояние или осущестаить обратный переход, понижая потенциал. Эти переходы на рисунке обозначены стрелкой 1. С другой стороны, переход из активного в пассивное состояние, как и обратный переход, вполне возможен при одном и том же постоянном потенциале, если изменяется концентрация анионов в растворе. С увеличением последней ра-  [c.101]

С увеличением потенциала до 0,5 в железо в растворе с pH = 6, по данным К- Ф. Бонгофера (111,4), переходит В пассивное состояние (рис. 1П-2).  [c.95]

Можно полагать, что именно протекание аналогичной реакции на электроде и в случае присутствия ионов хлора препятствует пассированию железа в растворах хлоридов. Исследование кинетики анодного процесса показало (рис. II1-4), что анодная поляризационная кривая стали 12ХМв I,ОН растворе сульфата натрия при температуре 300° С имеет сложный характер. С увеличением потенциала до — 0,050 в скорость анодного процесса возрастает. Железо в этой области потенциалов растворяется в активном состоянии. При дальнейшем увеличении потенциала скорость анодного процесса растворения металла сначала уменьшается, а затем изменяется крайне незначительно в достаточно широкой области потенциалов. Последнее обстоятельство указывает на то, что железо переходит в пассивное состояние. С дальнейшим ростом потенциала скорость растворения железа вновь увеличивается. Последняя область потенциалов соответствует перепассивации. Поскольку при низкой и высокой температурах введение в воду сульфата натрия в количестве 0,5 М не влияет существенным образом на характер и скорость коррозии низколегированных сталей аналогичный ход зависимости скорости растворения железа от потенциала следует ожидать и в дистиллированной воде. В нейтральных растворах, насыщенных воздухом, железо корродирует в основном с кислородной деполяризацией. Из представленной на рис. III-5 коррозионной диаграммы, полученной на основании опытных данных [111,6].  [c.96]

Благородные металлы Ag, Au, Pt, Pd обладают высокой коррозионной стойкостью, которая связана с их термодинамической стабильностью, а не переходом в пассивное состояние. Высокая стоимость ограничивает их применение в качестве коррозионно-стойких материалов. Наиболее часто эти металлы или сплавгл на их основе используют для изготовления химической посуды (лабораторной), неокисляющихся электроконтактов,-фильтров и фильтров для производства искусственного волокна, в ювелирном деле и др.  [c.389]

Известно, что высокая коррозионная стойкость в различных средах достигается благодаря тому, что металл переходит в пассивное состояние. Это касается и аморфных, и кристаллических сплавов, содержащих хром, в частности нержавеющих сталей. В чистых кислотах, не содержащих таких сильноокисляющих ионов, как хло-рид-ионы, -например в водных растворах серной кислоты, катодная поляризация приводит к тому, что нержавеющая сталь переходит в пассивное состояние. На рис. 9.13 представлены результаты рентгеновской фотоэлектронной спектроскопии (РФС) чистого кристаллического железа и двойных сплавов Fe — Сг, пассивированных в  [c.258]

Потенциалы активного растворения сплавов на оснрве железа, кобальта и никеля, в частности в сильных окислительных средах, повышаются при добавлении перечисленных выше металлов, обладающих большей активностью, чем металлы основы. При этом сплав обычно переходит в пассивное состояние. Если происходит активное растворение сплава, то активные легирующие элементы в больших количествах накапливаются в химических продуктах коррозии, которые образуют довольно толстую пленку (порядка нескольких нанометров). Эта пленка выполняет роль барьера йля диффузии ионов металла, участвующих в растворении сплава, т. е.  [c.271]

О том, что в сильных кислотах, содержащих, например, хлорид ионы, аморфные металлы даже при высоких потенциалах не подвергаются питтинговой коррозии, мы уже упоминали при рассмотрении поведения некоторых сплавов. Кристаллические двойные сплавы железо — молибден в 1 н. водном растворе H I переходят в пассивное состояние (см. рис. 9.21) с образованием пассивирующей наценки, состоящей из гидратированного оксида-гидрооксида железа, и даже при высоких потенциалах питтинговая коррозия здесь не протекает. Уже говорилось о том, что пассивирующая пленка из гидратированного оксида-гидрооксида железа образуется и в кристаллическом железе. Однако железо сильно корродирует и в нейтральных водных растворах Na l, не говоря уже о таком растворе,, как 1 н. НС1. Поэтому кристаллические сплавы Fe—Мо обычно приводят как пример сплавов с сильной питтинговой коррозией.  [c.275]

С увеличением температуры до 100 °С хромистые стали легче переходят в пассивное состояние, что сопровождается снижением г кр, однако при анодной поляризации хромистые стали подвергаются питтингообразованию. При изменении температуры от 25 до 100°С общая коррозия сталей переходит в пит-тинговую. Потенциал питтингообразования, найденный из поляризационных кривых, практически не зависит от содержания хрома в пределах 13—25% и температуры раствора. Плотность тока на поляризационных кривых сталей 12X13 и 12Х25Т в 1 н. растворе K NS (pH 4,8, t = 25°С) после выдержки электрода в этом же растворе при 100 °С и потенциалах —0,45 и —0,4 В в течение 3 мин уменьщается на 2—3 порядка по сравнению с плотностью тока в опытах, когда образцы предварительно активировали катодным током плотностью 10—100 А/м . Это позволяет предположить образование защитных слоев на хромистой стали при повышенной температуре.  [c.55]


Хромоникелевые стали [57]. При pH 4,8, 25 °С и анодной поляризации хромистая сталь 12X17 в 1 н. растворе K NS не пассивируется. Легирование стали всего лишь 2% никеля приводит к существенному торможению анодного процесса в области активного растворения, а при потенциале положитель-нее —0,4 В, сталь переходит в пассивное состояние (рис. 3.10). Дальнейший сдвиг потенциала в положительную сторону приводит к локальной активации поверхности с образованием пит-тингов.  [c.56]

Повышенная устойчивость пассивного состояния нержавеющих сталей в присутствии сульфатов иллюстрируется кривыми заряжения, которые можно записать при помощи автоматического потенциометра и усилителя. Устойчивость пассивного состояния при этом характеризуется частотой колебания потенциала и пределами его изменения (рис. 33). Если в чистом хлориде (0,1 N) потенциал стали претерпевал через 1,5 часа при анодном токе в 2 MKal M в среднем 12 колебаний в минуту в пределах 0,55—0,95 в, а в смеси сульфата и хлорида (1 1)— 2—3 колебания в минуту в пределах 0,65—1,25 б, то при 10-кратном содержании сульфата частота колебаний равнялась нулю сталь переходила в пассивное состояние и ее потенциал становился весьма устойчивым.  [c.68]

Представлялось интересным выяснить, в какой мере установленные закономерности можно перенести на металлы, способные переходить в пассивное состояние и корродирующие в объеме электролита в значительной степени с анодньго[ ограничением. Для этой цели была изучена работа пары медь—алюминий (1 9) в 0,1 N растворе Na l.  [c.146]

Зависимость скорости коррозии от потенциала при внутренней поляризации нитробензоатом амина такая же, как и при внешней анодной поляризации вначале при смещении потенциала в положительную сторону скорость растворения увеличивается. После достижения определенного потенциала, который мы назвали потенциалом частичной пассивации фч. п, скорость коррозии начинает резко падать и при достижении другого потенциала фп.п электрод переходит в пассивное состояние. Как видно, получается типичная для металла, склонного переходить в пассивное состояние, кривая с тремя участками активного растворения, активно-пассивного состояния и пассивного состояния.  [c.44]


Смотреть страницы где упоминается термин Переход в пассивное состояние : [c.242]    [c.141]    [c.39]    [c.40]    [c.180]    [c.102]    [c.262]    [c.161]    [c.82]   
Смотреть главы в:

Коррозия и защита от коррозии. Том 4  -> Переход в пассивное состояние



ПОИСК



Пассивность

Состояние пассивное



© 2025 Mash-xxl.info Реклама на сайте