Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие волн с кристаллической решеткой

Отправная точка современной теории твердого тела fl—51 — представление о кристаллической решетке и о взаимодействии волн с кристаллической решеткой. Поэтому прежде чем начать систематическое изложение основных представлений и понятий физики твердого тела, рассмотрим в краткой форме необходимые для дальнейшего сведения о кристаллической решетке и взаимодействии волн с решеткой.  [c.8]


ВЗАИМОДЕЙСТВИЕ ВОЛН С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ  [c.12]

Рассмотрим основные черты взаимодействия волн с кристаллической решеткой на примере рентгеновских лучей, используя при этом классический подход.  [c.12]

Значение эффективной массы электрона т определено с учетом взаимодействия электронов с кристаллической решеткой, когда последняя не испытывает тепловых колебаний. Поэтому можно считать, что электрон в идеальной кристаллической решетке (т. е. при Г = 0) движется как свободная частица, не испытывая рассеяния в узлах решетки. Это означает также, что электрон можно рассматривать как волну, свободно (без затухания) распространяющуюся в идеальной, не испытывающей тепловых колебаний, кристаллической решетке.  [c.456]

В Институте радиотехники и электроники Академии наук СССР разработана активная ультразвуковая линия задержки. Принцип ее действия основан на использовании явления усиления ультразвука дрейфом электронов в твердых телах. Усиление возникает из-за взаимодействия электронов с кристаллической решеткой. Особенно эффективно это взаимодействие в материалах, обладающих пьезоэлектрическими свойствами. Благодаря такому взаимодействию ультразвуковой волне передается энергия потока электронов, когда скорость их дрейфа в кристалле превышает скорость распространения ультразвука. Электромагнитные колебания преобразуются электромеханическим преобразователем в ультразвуковые. Возникшая ультразвуковая волна распространяется через звукопровод и активный элемент, в котором происходит ее усиление, и затем снова преобра-  [c.136]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]

Физическая природа наблюдаемых явлений обусловлена взаимодействием световой волны и вещества, анизотропия которого может быть связана с особенностями строения его молекул или, что чаще имеет место, с особенностями кристаллической решетки, в узлах которой находятся атомы или ионы исследуемого вещества.  [c.113]


Дифракция наблюдается при взаимодействии излучения и облучаемого объекта при условии, что длина волны излучения меньше, чем межатомные расстояния кристаллической решетки объекта. В обычных электронных микроскопах с ускоряющим напряжением более 40 кВ возникающее излучение удовлетворяет этим требованиям. Разумеется, просвечиваемая толщина объектов в основном зависит от величины ускоряющего напряжения. Она составляет около 100 нм для электронных микроскопов с ускоряющими напряжениями от 40 до 150 кВ.  [c.124]

Улучшение квантовой теории теплоемкостей может быть достигнуто, если основываться на более правильной модели твердого тела, учитывающей взаимодействие атомов. Каждый атом в кристаллической решетке связан с окружающими атомами и не может колебаться независимо от них. В результате взаимодействия атомы в решетке совершают сложные движения, которые можно приближенно представить как сумму гармонических колебаний с различными частотами. При этом для системы из N атомов приходится рассматривать ЗЛ/ независимых частот колебаний, принимающих значения от нуля до некоторой максимальной частоты т, которая качественно определяется минимальной длиной волны, близкой к величине межатомного расстояния. Эти частоты настолько близко расположены друг к другу, что их распределение можно рассматривать как непрерывную функцию f(v), часто называемую спектром частот. Если функция распределения известна, то можно рассчитать теплоемкость, которая в этом случае выражается уравнением  [c.265]

Уже в первые десятилетия нашего века нелинейные проблемы обсуждались не только применительно к механике (задача трех тел, волны на воде и т. д.) и к акустике, но и в связи с исследованием свойств твердых тел (учет ангармоничности колебаний атомов в кристаллической решетке в теории теплопроводности). Нелинейные задачи ставились зарождающейся радиотехникой (детектирование и генерация колебании) они непрерывно появлялись в других разделах науки и техники. Однако нелинейные трудности в этих различных областях казались совершенно специфическими и не связанными друг с другом. И лишь в 20-30-е годы в значительной мере благодаря деятельности Леонида Исааковича Мандельштама — создателя советской школы нелинейных физиков — среди специалистов различных областей физики и техники начало вырабатываться нелинейное мышление , и они начали перенимать нелинейный опыт друг у друга. Общность нелинейных явлений различной природы и общность их моделей, образов и методов рассмотрения стали почти очевидными. Сформировался своеобразный нелинейный язык, оперирующий такими понятиями, как нелинейный резонанс, автоколебания, синхронизация, конкуренция, параметрическое взаимодействие и т. д. Этот язык сопутствовал формированию современной теории колебаний и волн.  [c.13]

Замедление нейтронов с энергиями ниже 1 эв, т. е. в тепловой области, называется термализацией, потому что энергии нейтрона сравнимы с тепловой энергией рассеивающих ядер, которые уже не могут рассматриваться как покоящиеся. Если рассеивающее ядро находится в движении, то нейтроны могут как получать энергию за счет рассеяния, приводящего к возрастанию скорости, так и терять ее прп столкновениях. Следовательно, рассеяние, приводящее к возрастанию энергии нейтронов, которым можно было пренебречь в области замедления, необходимо теперь принимать во внимание. Кроме того, следует учитывать связи атомов в молекулах или в кристаллической решетке. Если атом находится в связанном состоянии, то он не может свободно испытывать отдачу при столкновении, так как существует взаимодействие между рассеивающим атомом и его соседями в молекуле или твердом теле. Наконец, нельзя не учитывать возможности эффектов интерференции в тепловой области энергий. Так как длина волны де Бройля для нейтрона с очень низкой энергией становится сравнимой с межатомным расстоянием в молекуле или кристалле, то может иметь место интерференция нейтронов, рассеянных на различных атомах.  [c.249]

Затухание спиновых волн происходит каК в результате взаимодействий волн между собой, так и с дефектами и тепловыми колебаниями кристаллической решетки. Многочисленные механизмы затухания могут быть учтены феноменологически. Для этого в уравнение для намагниченности (2.1) нужно добавить аддитивный релаксационный член / , который, в частности, можно задать в форме [11  [c.373]


Дисперсионные кривые для всех типов волн, распространяющихся вдоль оси анизотропии ферромагнетика в магнитостатическом приближении изображены на рис. 14.4. Видно, что в данном случае имеется четыре дисперсионные ветви, что и следовало ожидать в соответствии с общими представлениями о связанных волнах. Ветвь I отвечает невзаимодействующей со спиновой системой продольной звуковой волне, а ветвь 3 — поперечной магнитоупругой волне с правой круговой поляризацией, слабо взаимодействующей со спиновой волной. Кривые 2 и 4 при к>кд отвечают взаимодействующим поперечной магнитоупругой волне с левой круговой поляризацией и спиновой волне. При как ситуация меняется на обратную — ветвь 2 соответствует спиновой волне, а ветвь 4 — звуковой. Волны 2 и часто называют связанными магнитоупругими волнами. Подчеркнем еще раз, что каждая из распространяющихся волн характеризуется при этом как упругими смещениями, так и магнитными моментами, причем, как следует из (3.2), доля магнитной части в упругой волне и доля механической части в спиновой особенно значительны (одного порядка) при со , (й)-- сО( (й), т. е. в области магнитоакустического резонанса. Таким образом, возбуждение звука с помощью магнитных колебаний и, наоборот, спиновых волн посредством механических колебаний наиболее эффективно при со (й) со, (й). Частот магнитоакустического резонанса, очевидно, две. Одна из них, низшая, практически совпадает с со(0) и для типичных параметров, используемых в эксперименте, составляет - 10 ГГц. Вторая частота лежит в области частот, близких к предельным частотам колебаний кристаллической решетки. Таким образом, явление магнитоакустического резонанса может быть использовано для генерации гиперзвука.  [c.377]

Здесь имеется в виду лишь затухание, обусловленное взаимодействием электронов друг с другом. Фактически плазменные волны в твердом теле всегда затухают благодаря рассеянию электронов на неидеальностях кристаллической решетки (фононах, атомах примеси и т. д.). В металле, однако, это обстоятельство не играет суш ественной роли, так как соответствуюш ие времена  [c.174]

Электродинамическое взаимодействие состоит в возбуждении в токопроводящем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. Например, вихревые токи, индуцируемые в изделии катушкой 2 (см. рис. 30) с переменным гоком, будут направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности изделия. В результате в изделии возбудится поперечная волна. Поскольку вихревые токи распределены в слое конечной толщины, возникающие упругие силы будут носить объемный характер, но вследствие скин-эффекта они будут концентрироваться в узком поверхностном слое.  [c.69]

Когда подобраны активный ион и матрица, следует рассмотреть диаграмму состояний, которая показывает, что получается в результате взаимодействия двух (и более) веществ. В твердотельной электронике в качестве активной среды применяют сложные оксиды (например, 5 А12О,, X 3 У,Оз — гранат), так как они обладают высокими прозрачностью в нужном диапазоне длин волн, теплопроводностью и температурой плавления, а также отсутствием взаимодействия с агрессивными средами. При выборе оптимального состава активной среды необходимо учитывать изоморфное замещение с минимальным искажением кристаллической решетки матрицы ее ионов ионами редкоземельного элемента и метод выращивания монокристаллов.  [c.58]

Известно, что прочностные свойства металлов зависят не только от параметров структур .1, но также от характера и взаимодействия дефектов различного рода, в первую очередь дислокаций. В основу рентгеновского анализа дислокационной структуры было положено описание дискретно блочного строения и деформаций кристаллической решетки в микрообъемах в дислокационных терминах как неоднородное распределение плотности дислокаций. Следовательно, блоки мозаики можно представить в виде периодической сетки дислокаций со средней длиной волны D. Такое представление имеет физические обоснование, поскол1)Ку границы блоков мозаики содержат дефектные участки недостроенных и деформированных кристаллитов. При оценке плотности дислокаций внутри блоков микродеформации е можно связывать с полем напряжений, создаваемых наличием рассматриваемой неоднородности. Таким образом, определенные при анализе профиля рентгеновских линий параметры О и е позволяют в некотором приближении оценить характер распределения и плотность дислокаций.  [c.173]

Наиболее полно аналогия явления дифракции и интерференции частиц с такими же явлениями в оптике проявляется лишь в том случае, когда размеры систем, с которыми эти частицы взаимодействуют, соизмеримы с дебройлевской длиной волны например, для нейтрона, движущегося с тепловой скоростью, равной 2 10 см1сек, длина волны де Бройля равна 1 А, или 10 см, что близко к размерам постоянной кристаллической решетки.  [c.16]

В аналитических целях используется ряд явлений, заключающихся в том, что оптически активные среды в зависимости от свойств и структуры при взаимодействии с поляризованным светом могут изменять плоскость поляризации света (поляриметрический метод), изменять угол вращения плоскости поляризации для излучений различных длин волн (спектрополяриметрический метод), осуществлять вращение плоскости поляризации в присутствии внешнего магнитного поля (метод магнитного вращения). Возможно появление разности коэффициентов поглощения в исследуемой жидкости, помещенной в продольное магнитное поле, для лево- и правоциркулирующего поляризованного света — эффекта, используемого в методе кругового дихроизма, и разности в скорости распространения света, поляризованного по кругу вправо и влево, — эффекта кругового двулучепреломления. В зависимости от состава и структуры среды при помещении жидкости в поперечное магнитное поле возникает разность в показателях преломления обыкновенного и необыкновенного лучей ортогонально поляризованного света (метод магнитоуправляемого двулучепреломления). Оптическая активность веществ обусловливается двумя факторами — особенностью кристаллической решетки вещества и особенностями строения (асимметрией) молекул вещества. Для веществ первого типа характерна потеря оптической активности при разрушении кристаллической решетки плавлением или растворением. Вещества второго типа проявляют активность только в растворенном или  [c.118]


Рентгеновский анализ служит для изучения кристаллической структуры металлов. Этот метод основан на дифракции рентгеновских лучей рядами атомов кристаллической решетки. Рентгеновские лучи представляют собой электромагиитиые волны с длиной волны 0,0005—0,2 нм. Благодаря малой длине волны эти лучи возбуждают электроны атомов или ионов, находящихся в узлах кристаллической решетки. Поэтому атомы пионы сами становятся источниками электромагнитных колебаний. Лучи, рассеянные отдельными атомами или ионами, взаимодействуют (интерферируют) между собой. Вследствие упорядоченного расположения атомов в кристалле интерференция рассеянного излучения происходит таким образом, что в одних направлениях колебания усиливаются, в других ослабляются и гасятся. Возникающая интерференционная картина может быть истолкована как отражение лучей от отдельных кристаллографических плоскостей, подчиняющееся уравнению Вульфа—Брегга.  [c.50]

Как известно, несовершенство упорядоченного расположения атомов в поликристаллических металлах и минералах оказывает влияние на скорость и поглощение акустических волн в этих материалах. Поскольку многие породы состоят из зерен, которые имеют очевидную кристаллическую структуру или, по крайней мере, химическое строение которых предполагает упорядоченность атомов, можно ожидать, что такие же эффект могут проявляться и при распространении сейсмических волн. Полный обзор исследования по этому вопросу и обсуждение наиболее важных идей было дано Мэйсоном (1976 г.). Главная идея заключается в том, что напряжения могут изменять положение дефектов в кристаллической решетке. Это изменяет связь деформации с напряжением в среде, увеличивая значения упругих модулей и добавляя к ним мнимую часть. Чтобы изменить положение дефекта, требуются как тепловая энергия, так и механическое напряжение. Тепловая энергия затрачивается на преодоление энергетического барьера, который смещается под воздействием напряжений. Согласно Мэйсону дефектом, который наиболее сильно влияет на скорость и поглощение волн, является дислокация, представляющая линейную область нарушенного порядка, удерживаемая на обоих концах некоторыми дефектными атомами. В одном слу тае сейсмические волны заставляют дислокацию колебаться подобно растянутой струне, излучая энергию при взаимодействии с тепловыми фоно-иами. Это явление обусловливает широкий максимум поглощения в мегагерцовом диапазоне частот. Более вероятно, что дислокации пересекают энергетический барьер и только частично находятся в области мини-чума потенциальной энергии. Каждая дислокация может содержать некоторое число узлов, при этом движение дислокации происходит в том случае, когда все узлы переходят через потенциальный барьер в соответствии с приложенным напряжением, Этот механизм ведет к независимости Q от частоты. Оба механизма дают значения Q, находящиеся в хорошем согласии с экспериментами на гранитах формации Уистерли и других породах, если использовать некоторые правдоподобные предположения о размере и плотности дислокаций. Результаты более поздних экспериментов [99] не удалось объяснить движением дислокаций в твердой фазе пород. В связи с этим была развита модель, базирующаяся на теории Герца для контактируюш,их сфер, в которой учитывается движение дислокаций на поверхности трещин. Искажения материала, наблюдаемые при деформациях, достигающих 10-, могут быть Объяснены наличием дислокаций, отрывающихся от концевых дефектных атомов.  [c.141]

Электродинамическое взаимодействие состоит в возбуждении в токопроводяш,ем материале вихревых токов, которые затем взаимодействуют с постоянным магнитным полем и вызывают колебания электронного газа , а это, в свою очередь, приводит к возбуждению колебаний атомов, т. е. кристаллической решетки материала. На рис. 1.28 вихревые токи, индуцируемые в ОК катушкой 2 с переменным током, направлены перпендикулярно плоскости чертежа, а силы их взаимодействия с магнитным полем — параллельно поверхности ОК. В результате в ОК возбудится поперечная волна. Обратный эффект состоит в возбуждении вихревых токов в металле, колеблющемся в постоянном магнитном поле под действием упругих волн. Эти вихревые токи индуцируют переменный ток в катушке 2, которая в данном случае служит приемником.  [c.68]

Природа электрических явлений, сопутствующих парапро- цессу, может быть понята из следующих соображений. Рас-смотрим, например, что будет происходить с -электро- 1 нами, если мы будем нагревать ферромагнетик. В обычных металлах принято считать, что причиной возрастания электросопротивления с температурой является взаимодействие электронов проводимости с тепловыми колебаниями ионов в кристаллической решетке (фононами). В результате этого взаимодействия -электроны отдают свою энергию и импульс, вследствие чего электросопротивление растет. Взаимодействие между электронами и фононами, которое можно рас- сматривать как столкновения между ними, определяет тем- пературную зависимость электросопротивления металла. В случае ферромагнитных металлов Вонсовский допускает, что наряду с этими процессами столкновений 5-электро- нами с фононами имеют место процессы столкновения между 5-электронами и так называемыми ферромагнонами (спиновыми волнами, создаваемыми -электронами). Представление о спиновых волнах было введено Блохом для расчета обменного взаимодействия между спинами электронов. Он показал, что при низких температурах энергия электронов при учете обменного взаимодействия может быть представлена как сумма энергий отдельных элементарных возбуждений . Последним сопоставляются квазичастицы — фер-ромагноны, или спиновые волны. Введение этих частиц значительно упрощает вычисление обменного взаимодействия между спинами.  [c.197]


Смотреть страницы где упоминается термин Взаимодействие волн с кристаллической решеткой : [c.208]    [c.312]    [c.12]    [c.255]    [c.286]    [c.264]    [c.91]   
Смотреть главы в:

Введение в физику твердого тела  -> Взаимодействие волн с кристаллической решеткой



ПОИСК



Взаимодействующие волны

Кристаллическая решетка

Кристаллические



© 2025 Mash-xxl.info Реклама на сайте