Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Звук, возбуждение

Заряды кумулятивные 24, 298 Звезды нерегулярные 283, 290 Звук, возбуждение 376  [c.457]

Решение. Находим полосу частот звука, возбужденного в зале от fg-Af/2 до fg+Af/2, где Д/ = 1/т = 2Гц. Отсюда определяем число нормальных волн по формуле (3.2) dN = 73.  [c.70]

В этом случае при истечении газа из щели на ее кромках образуются первичные вихри. В дальнейшем при взаимодействии струи с клином, расположенным на оси симметрии струи, на клине происходит возбуждение звука с частотой, соответствую-  [c.137]


Возбуждение звука турбулентностью  [c.406]

ВОЗБУЖДЕНИЕ ЗВУКА ТУРБУЛЕНТНОСТЬЮ 407  [c.407]

S 75] ВОЗБУЖДЕНИЕ ЗВУКА ТУРБУЛЕНТНОСТЬЮ 409  [c.409]

Процессы, происходящие в твердых телах, связанные с колебаниями атомов кристаллической решетки, выглядят особенно просто, если обратиться к одному из самых фундаментальных обобщений квантовой механики. В основе этого обобщения лежит идея французского физика Луи де Бройля о том, что каждой волне с частотой со и волновым вектором к можно сопоставить частицу с энергией E—Htd и импульсом p = ftk. Так, световые (электромагнитные) волны можно рассматривать как квантовые осцилляторы излучения или считать, что они состоят и частиц — квантов, называемых фотонами. Каждый фотон имеет энергию Й.0). Аналогично, если обратиться к формуле (5.70) для энергии квантового осциллятора, то звуковую волну с волновым вектором к и поляризацией s можно рассматривать как совокупность ге(к, s) квантов с энергией Йсо(к, s) каждый и плюс энергия основного состояния /2Й<в(к, s). Эти кванты (или частицы звука) звуковой волны называют фононами. Величина ft. o(k, ь), очевидно, представляет собой наименьшую порцию энергии возбуждения над основным уровнем АЛ (к, s). Так как фонон несет наименьшую энергию, его рассматривают как элементарное возбуждение. Сложное возбуждение есть просто возбуждение, содержащее много фононов. Коллективные движения атомов в кристалле представляют собой звуковые волны, а соответствующие им возбуждения — кванты звука, или фононы.  [c.161]

Вывод формулы для теплоемкости, основанный на представ лениях о фононах. Коллективные движения атомов в кристалле, как мы видели в гл. 5, представляют собой звуковые волны, а соответствующие им возбуждения — кванты звука или фононы, энергия которых равна Е=П со, а импульс р связан с волновым числом к обычным соотношением для свободных частиц p=ftk. Энергия и импульс фонона с учетом выражения типа (6.18) связаны соотношением  [c.175]

Хотя при описании распространения света в упругом эфире Гюйгенс пользовался термином волна , однако, строго говоря, световые волны он не рассматривал. Он писал, что импульс возбуждения распространяется так же, как и при звуке, сферическими поверхностями, или волнами . Я называю эти поверхности волнами,— замечал он,— по сходству с волнами, наблюдаемыми на воде, в которую брошен камень . Чтобы его не заподозрили в переоценке этого сходства, Гюйгенс считал нужным подчеркнуть Так как  [c.24]

Дальнейшие сведения о типе двухжидкостной модели, подходящ,ей для описания Не II, можно получить из измерений второго звука под давлением. Согласно теории Ландау, сверхтекучая компонента должна быть свободна от всех возбуждений, фононы же и ротоны связаны только с нормальной компонентой. Уже отмечалось, что быстрый рост скорости звука в этой модели должен наблюдаться в области, где энтропия фононов становится доминирующей. Так как под давлением это будет иметь место при более низкой температуре, соответственно должно сместиться и начало быстрого роста скорости 2. Более того, согласно формуле Ландау (14.2), при абсолютном нуле скорость второго звука должна быть пропорциональна скорости первого звука, и, поскольку последняя с давлением возрастает, кривые скорости для различных давлений должны пересекаться при низких температурах.  [c.854]


Чистые музыкальные тона представляют собой колебания, близкие к периодическим, и они дают, следовательно, большую амплитуду основного тона и некоторое число гармонических составляющих, амплитуды которых обычно убывают по мере увеличения номера гармоники. Распределение амплитуд этих гармонических составляющих для звуков, создаваемых различными музыкальными инструментами, различно. Эти различия, как указывалось, и определяют, главным образом, различный тембр звуков. Содержание гармоник определяется не только свойствами колебательной системы, являющейся источником звука, но и способом возбуждения колебаний. Поэтому, например, тона, получающиеся при возбуждении струны смычком и щипком , имеют разный тембр.  [c.737]

Возбуждение волн колеблющимся телом связано с излучением энергии в окружающую среду. В источниках звука потери энергии на излучение могут быть очень значительны (чем больше эти потери, тем эффективнее действует излучатель) потери на излучение обусловливают сильное затухание собственных колебаний излучателя. Влияние этих потерь легко обнаружить на камертоне. Камертон без резонансного ящика звучит гораздо слабее, чем с ящиком, но  [c.739]

Лагранж в Аналитической механике рассматривает случай, когда глубина жидкости очень мала и постоянна. Он доказывает, что в этом случае распространение волн происходит согласно тем же законам, что и распространение звука, так что их скорость постоянна и не зависит от первоначального возбуждения далее, он находит, что она пропорциональна квадратному корню из глубины жидкости, когда она находится в канале, имеющем на всем своем протяжении одну и ту же ширину. Сверх того, он допускает, что движение, возбужденное на поверхности несжимаемой жидкости любой глубины, передается лишь на очень малые расстояния ниже этой поверхности, откуда он приходит к выводу, что его анализ дает также решение задачи, как бы ни была велика глубина рассматриваемой жидкости таким образом, если бы наблюдение дало возможность определить расстояние, на котором движение становится незаметным, то скорость распространения волн на поверхности была бы пропорциональна квадратному корню из. этого расстояния и обратно, если эта скорость непосредственно измерена, можно из нее получить ту небольшую глубину, на которую движение распространяется. Но мы позволим себе изложить здесь несколько простых замечаний, которые доказывают, что подобное распространительное толкование,  [c.409]

Понятие статистической связи между акустическими сигналами машин является одним из фундаментальных. Акустическое поле машины образуется путем наложения множества более простых акустических полей, обусловленных отдельными источниками звука внутри машины. Акустические сигналы различных точек поля оказываются поэтому статистически связанными, и эта связь зависит как от характера возбуждения звука в источниках, так и от свойств машинных и присоединенных конструкций. Анализ этой связи позволяет решить ряд практических задач при исследовании источников акустических сигналов машин и свойств опорных и присоединенных конструкций.  [c.60]

Рассмотрим, например, излучение звука корпусом машины в воздух. Шумовой сигнал, возбужденный непосредственно у машины вибрирующей поверхностью корпуса, будет распространяться по воздуху во все стороны и через некоторое время Т достигнет точки наблюдения. При сравнении вибраций корпуса машины и воздушного шума в точке наблюдения естественно было бы передвинуть вперед сигнал воздушного шума на время Т или задержать вибрационный сигнал на это же время, т. е. привести эти два сигнала к одному началу отсчета, и только после этого производить их совместный анализ. В этом случае говорят  [c.76]

Возбуждение излучателя осуществляется пакетами электрических колебаний, поступающих с генератора 6, который управляется импульсами тактового генератора 9. Ультразвуковые колебания, излучаемые пьезокерамическими дисками, распространяются в направлении к поверхности контролируемого объекта и после отражения от нее воздействуют на приемник 3, который преобразует энергию ультразвуковых колебаний в электрические сигналы. Сигналы, поступающие с выхода приемника 3 усиливаются предусилителем 7, детектируются и после обработки в селекторе поступают на вход триггера 10. При этом длительность выходных импульсов триггера пропорциональна измеряемому расстоянию, а амплитуда пропорциональна скорости распространения звука. Преобразование импульсов, модулированных по длительности и амплитуде, в напряжение осуществляется посредством фильтра нижних частот 12, выход которого подключается к индикатору 14 и пороговому устройству 11, формирующему сигналы для управления механизмами. Питание функциональных узлов дальномера осуществляется от узла сетевого питания 13.  [c.235]


Вибрационная звукопередача. При передача звука через стену, перекрытие или иную ограждающую конструкцию, лишенную отверстий, происходит возбуждение в этой конструкции вибраций звуковой частоты.  [c.357]

Ограждение, возбужденное звуковой волной, падающей с одной стороны, излучает звук на другую сторону. При этом чем больше колебательная скорость движения ограждающей поверхности, тем выше уровень звука за ней. С точностью до нескольких децибел этот уровень равен  [c.357]

Благодаря сопротивлению окружающей среды и внутреннему трению в материале лопатки амплитуда свободных колебаний после удаления силы, вызвавшей колебания, уменьшается, т. е. колебания являются затухающими через некоторое время после возбуждения колебаний лопатка приходит в состояние покоя. Частота собственных колебаний и при затухании их остается неизменной, так же, как у камертона, интенсивность звука которого постепенно падает после удара, но высота тона (частота колебаний) не меняется.  [c.107]

Турбулентные пульсации скорости тох<е являются источником возбуждения звука в окружающем объеме жидкости. В этом параграфе будет изложена общая теория этого явления [М J Lightliiil, 1952). Будет рассматриваться ситуация, когда турбулентность занимает конечную область Уо, окруженную неограниченным объемом неподвижной жидкости. При этом самая турбулентность рассматривается в рамках теории несжимаемой жидкости — вызываемым пульсациями изменением плотности пренебрегаем это значит, что скорость турбулентного движения предполагается малой по сравнению со скоростью звука (как это предполагалось и во всей главе III).  [c.406]

С описанными свойствами звуковых волн в гелии И тесно связан и вопрос о различных способах их возбуждения ( , М. Лиф-шиц, 1944). Обычные механические способы возбуждения звука (колеблющимися твердыми телами) крайне невыгодны для получения второго звука в том смысле, что интенсивность излучаемого второго звука ничтожно мала по сравнению с интен-сив(1остью одновременно излучаемого обычного звука. В гелии II возможны, однако, и другие, специфические для него способы возбуждения звука. Таково излучение твердыми поверхностями с периодически меняющейся температурой интенсивность излучаемого второго звука оказывается здесь большой по сравнению с интенсивностью первого звука, что естественно ввиду указанного выще различия в характере колебаний температуры в этих волнах (см. задачи 1 и 2).  [c.727]

При подстановке известного из измерений значения скорости звука выражение (23.1) переходит в зависимость 0,021 джоуль1 г- град). Возникновение дополнительных возбуждений выше 0,7°К соответствует в теории Ландау появлению ротонов, а в двухжидкостной модели Тисса—испарению конденсата Бозе—Эйнштейна в пространстве скоростей. Вид ожидаемой зависимости теплоемкости от температуры в этих двух теориях оказывается одинаковым, однако, как уже указывалось в разделе 1, роль вклада обеих компонент в теплоемкость оказывается совершенно различной с точки зрения проблемы сверхтекучести. В теории Ландау сверхтекучая компонента не обладает не только ротонной, но и фононпой энтропией, тогда как, по Тисса, эта компонента должна сохранять свою фононную энтропию. На основании одних только измерений теплоемкости нельзя, таким образом, решить вопрос, имеет ли сверхтекучая компонента фононную энтропию или пет для этого необходимо определить энтропию нормальной компоненты. Такие данные можно получить при достаточно низких температурах, измеряя тепло-перенос и термомеханический эффект в гелии.  [c.824]

Для низких температур результаты Капицы хорошо согласуются с данными по теплоемкости, хотя в общем они очень завышены, чтобы быть убедительными. Позднейшие данные, полученные в Оксфорде, систематически отклоняются от величин Крамерса, Васшера и Гортера, однако само отклонение невелико и не дает оснований сомневаться в согласии величин, полученных из измерений теплопереноса и теплоемкости. При температуре 1,2° К расхождение между значениями, учитывающими и не учитывающими фононную энтропию, равно 30%, тогда как величины Бруэра, Эдвардса и Мендельсона нигде не обнаруживают отклонений, больших+ 3%, в интервале температур от 1,2 до 1,7° К. Рассмотрение этих результатов вместе с данными по скорости второго звука не оставляет сомнений в том, что сверх текучая компонента не несет не только энтропии аномальных возбуждений, но и энтропии фононов. Хотя одно это и нельзя еще рассматривать как доказательство правильности теории Ландау, однако ясно, что это противоречит модели, предложенной Тисса.  [c.826]

Выше 0,6° к теплопроводность возрастает более резко и оказывается зависящей от градиента температуры. В общем явление здесь протекает так же, как это описывалось в предыдущем пункте. Это возрастание теплопроводности соответствует росту теплоемкости, наблюдаемому при той же температуре, и, очевидно, происходит вследствие поя1 ления возбуждений, отличных от фононного. Ниже 0,6° К теплопроводность не зависит от градиента температур и соответствует изменению теплоемкости с температурой. Различие теплопроводности для двух капилляров с разными диаметрами связано, по-видимому, е неодинаковой средней длиной пробега фонона, являющейся величиной порядка диаметра. Этот эффект вызван, таким образом, рассеянием фононов на границах образца он наблюдался также па твердых диэлектриках при низких температурах. Результаты опытов, по-видимому, согласуются с теорией Ландау и Халатникова в том, что средняя длина свободного пробега, сильно влияющая па вязкость и теплопроводность, при низких температурах становится очень большой. Это замечание оказывается существенным и при изучении поведения второго звука при самых низких температурах, которое будет рассмотрено в следующем разделе.  [c.848]


Все описанные до сих пор эксперименты проводились либо с тепловыми импульсами, либо со стоячими волнами, возбуждаемылш с помощью нагревателей. Кюрти и Мак-Пнтош [133] недавно описали метод возбуждения второго звука путем намагничиванпя и размагничивания парамагнитной солн. Простота этого метода была продемонстрирована ими для обычных гелиевых температур, причем отмечалось, что ния е 1° К он будет особенно удобен, поскольку в этом методе отсутствует необратимый нагрев.  [c.854]

Фононы. Когда было выяснено, что гелий даже при абсолютном нуле будет оставаться в жидком состоянии, рядом авторов стал обсуждаться вопрос о тепловых возбуждениях в этой жидкости вблизи абсолютного нуля. Обычно допускается, что, хотя вместе с продольными волнами могут также существовать и волны сдвига, только волны перного типа возбуждаются при самых низких температурах. Нами уже рассказывалось о различных попытках экспериментального определения вклада 4)ононов в тепловую энергию жидкого гелия. Этот вклад можно опенить по теории Дебая по известной скорости первого звука или сжимаемости гелия. На основании этой теории имеем для энергии  [c.877]

Источником звука является всякое тело, колеблющееся с частотой, лежащей в пределах звукового диапазона, и возбуждающее в окружающей упругой среде (обычно в воздухе) звуковые волны. Этот процесс возбуждения волн в окружающей среде носит название излучения волн. Различные тела в разной степени обладают способностью излучать звуковые волны. Например, колеблющийся камертон сам по себе излучает очень слабо. Это объясняется малыми размерами ножек камертона и характером их колебаний. Как и в случае отдельного импульса ( 134), колеб пощаяся ножка камертона вызывает сжатие воздуха с одной стороны и в то же время разрежение — с другой. Вследствие того, что выравнивание давления в воздухе происходит со скоростью звука, эти сжатия и разрежения в сильной степени компенсируют друг друга. Вместо того, чтобы возбуждать упругую волну в окружающем воздухе, колеблющаяся ножка камертона лишь перекачивает прилегающие к ней слои воздуха с одной стороны на другую. Звуковые волны возбуждаются только постольку, поскольку это перекачивание происходит не полностью.  [c.738]

Колеблющаяся струна вызывает сжатие воздуха, с одной стороны, и в то же время разрежение — с другой. Так как выравнивание давления в воздухе происходит со скоростью звука, то эти сжатия и разрежения в значительной мере компенсируют друг друга. При этом осноинаи часть энергии колебания струны затрачивается не на возбуждение звуковой волны в воздухе, а на перекачку прилегающего к струне воздуха с одной ее стороны на другую.  [c.233]

Возбужденное состояние кристалла, заключаюш,ееся в колебаниях кристаллической решетки, мол<ет быть описано (если только возбуждение не очень сильное) с помощью представления о газе, состоящем из квантов упругой энергии, получивших название фононов. Фонон является одним из типов квазичастиц, под которыми подразумевают возбул<денные состояния совокупности реальных частиц при коллективном движении последних. К квазичастицам относятся также фотоны и другие элементарные возбуждения. Фононы соответствуют колебательным движениям составляющих кристалл атомов, т. е. ассоциируются с различными типами элементарных колебаний кристаллической решетки. Любое сложное колебание решетки можно согласно разложению Фурье представить в виде совокупности гармоничных волн (каждая длиной Kj). Эти упругие волны несут вполне определенную энергию и обладают некоторым значением импульса рф = Е1с. Поэтому их можно трактовать как частицы, т. е. фононы (кванты звука).  [c.461]

Для эффективного возбуждения пьезопластины необходимо, чтобы собственная частота / толщинных колебаний пьезоэлемента совпадала с частотой электрических колебаний т. е. f = f . Это условие обеспечивается, когда толщина пьезопластины h = = %J2 = j 2f), где и Сд — соответственно длина волны и скорость звука в материале пьезопластины, а соотношение 2а//г л 20. Пьезопластина, параметры которой удовлетворяют этим требованиям, обеспечивает максимальную амплитуду излученного импульса при прочих равных условиях. В серийных преобразователях, работающих на частоте 2,5 МГц и выше, выполняются оба условия, тогда как в преобразователях с более низкой частотой выполняется только первое условие. Например, в преобразователях на частоту 0,2 МГц 2а/Л л 4, и для выполнения условия 2ajh = 20 необходимы пьезоэлементы диаметром 150 мм. Поэтому для обеспечения второго условия низкочастотные преобразователи часто выполняют в виде пакетов, склеенных из нескольких пьезопластин, электрически соединенных между собой параллельно (рис. 3.2). При этом суммарная толщина пакета h должна удовлетворять условию h = KJ2 = j 2f). Число пластин в пакете выбирают с учетом конкретного типа электрического генератора. Например, в режиме излучения увеличение числа пластин (при заданной частоте / это эквивалентно уменьшению их толщины) ведет к повышению напряженности электрического поля в каждой из них. Однако при этом увеличивается общая емкость преобразователя, растет нагрузка на электрический генератор и, как результат, падает возбуждающее напряжение. При одном и том же значении af чувствительность многослойных преобразователей значительно ниже, чем однослойных. Конструкция многослойных преобразователей достаточно сложна, так как к каждой пластине необходимо подвести электрическое напряжение, для чего между ними помещают фольгу, к которой припаивают подводящие провода.  [c.140]

То обстоятельство, что в предположенных ус.човиях период Т—2 i jvii не зависит от начальных условий (способа возбуждения), а зависит только от h ш k, т. е. только от внутренних свойств камертона, оправдывает его назначение как инструмента, служащего для получения звука определенной высоты.  [c.66]

Время реверберации. При производстве звука в помещении возбужденные волны многократно отражаются от стен, пола, потолка и всех предметов, заполняющих помещение. При каждом отражении часть звуковой энергии поглощается, так что после прекращения колебаний источником плотность звуковой энергии во всех точках постепенно убьтает. Если в момент прекращения колебаний плотность звуковой энергии равна Уо. то спустя промежуток времени t она становится разной  [c.220]

I — характерный размер и — перемещение. К — вязкость упруго-вязкой среды у — удельная поверхностная энергия материала а — коэффициент температуропроводности а — коэффициент теплового расширения АТ — разница температур теля и среды, вызывающая разрушение материала JJ, коэффициент Пуассона w — скорость потока жидкости п — частота возбуждения потока а — коэффициент теплообмена — коэффициент теплопроводности тела коэффициент теплопроводности газа v — кинематичесипя вязкость Др — перепад давления газа р — плотность с —удельная теплоемкость а- — скорость звука в заданной среде g — ускорение земного притяжения q — удельный тепловой поток — температура среды —  [c.217]

Такие дефекты, как осыпаемость, трещины, пережог, определяются внешним осмотром. Степень высушенности крупных стержней может быть проконтролирована специальным прибором — влагомером, состоящим из медного и железного электродов (проволок), погружаемых в высушенный стержень на требуемую глубину 30—40 мм и соединенных между собой гальванометром. Последний показывает возбужденную, в зависимости от содержания влаги, электродвижущую силу и тарируется непосредственно в процентах влажности. О достаточной высушенности стержней часто судят также по звуку, получающемуся при простукивании.  [c.355]


Метод Цвиккера использует понятие характеристической полосы частот и интегрирования возбуждения вдоль основной мембраны уха с учетом эффекта маскировки. Его применяют для пересчета в громкость результатов анализа шумовых процессов только в 1/з-октавных полосах частот в диффузном или свободном поле. Эффект маскировки состоит в том, что два различных звука, воспринимаемых ухом одновременно, слышны по-разному один j-ромче, другой тише. Эго явление объясняется сдвигом порога слышимости, вызванным наиболее сильным звуком, и зависит от разности частот данных звуков.  [c.410]

Другая важная и интересная фаза расследования, выполняемого обычно оперативной группой,— это анализ радиосообщений. Так как большинство радиопереговоров между самолетом и аэропортами регистрируется, то группа тщательно изучает эту информацию. Иногда члены экипажа передают сообщения об аварии, но ввиду их возбужденного состояния эти сообщения бывают неразборчивы. Часто сообщения оказываются искаженными из-за повреждения аппаратуры. В таких случаях сообщение записывается на ленту в виде коротких групп слов и повторяется через каждые несколько секунд. С помощью специальной звукоанализирующей аппаратуры, способной отфильтровать помехи и некоторые полосы частот, исследователи могут выделить отдельные слова или смысловые сочетания звуков, что иногда позволяет выяснить смысл сообщения.  [c.300]

РЕАКЦИЯ [термоядерная — реакция слияния легких атомных ядер в более тяжелые, происходящие при высоких температурах 10 К фотоядерная- -расщепление атомных ядер гамма-квантами цепная — реакция деления атомных ядер тяжелых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления ядерная — превращение атомных ядер, вызванное их взаимодействием с элементарными частицами, в том числе с гамма-квантами, или друг с другом] РЕВЕРБЕРАЦИЯ — процесс постепенного затухания звука в закрытых помещениях после окончания действия его источника РЕЗОНАНС (есть явление резкого возрастания амплитуды вынужденных колебаний системы при приближении частоты вынужденной силы к собственной частоте колебаний системы акустический — избирательное поглощение энергии фононоБ определенной частоты в парамагнитных кристаллах, помещенных в постоянное магнитное поле антиферромагнитный — избирательное поглощение энергии электромагнитных волн, проходящих через антиферромагнетик, при определенных значениях частоты и напряженности приложенного к нему магнитного поля гигантский — широкий максимум, которым обладает зависимость сечения ядерных реакций, вызванных налетающей на атомное ядро частицей или гамма-квантом, от энергии возбуждения ядра магнитный — избирательное поглощение энергии проходящих через магнетик электромагнитных волн на определенных частотах, связанное с переориентировкой магнитных моментов частиц вещества параметрический — раскачка колебаний при периодическом изменении параметров тех элементов колебательных систем, в которых сосредоточивается энергия колебаний)  [c.271]


Смотреть страницы где упоминается термин Звук, возбуждение : [c.74]    [c.807]    [c.837]    [c.855]    [c.867]    [c.134]    [c.312]    [c.263]    [c.323]    [c.417]    [c.424]    [c.478]    [c.558]   
Струи, следы и каверны (1964) -- [ c.376 ]



ПОИСК



Возбуждение звука в жидкостях

Возбуждение звука в трубе прямоугольного сечения

Возбуждение звука потоком

Возбуждение звука при испарении жидкости

Возбуждение звука турбулентностью

Возбуждение и усиление звука движущимся источником

Возбуждение нелинейного звука движущимся источником

Возбуждения

Периодические струи возбуждение звука

Упрощённый анализ для случая высоких частот. Интенсивность и среднее квадратичное давление. Решение в форме разложения в ряд по фундаментальным функциям. Установившийся режим в помещении. Прямоугольное помещение. Частотная характеристика интенсивности звука. Предельный случай высоких частот. Приближённая формула для интенсивности. Точное решение. Коэффициент поглощения поверхности. Переходные процессы, возбуждение импульсом. Точное решение задачи о реверберации звука Задачи



© 2025 Mash-xxl.info Реклама на сайте