Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения упругого равновесия и движения в перемещениях

Уравнения упругого равновесия и движения в перемещениях  [c.75]

Постановка задачи теории упругости в перемещениях при граничных условиях состоит в том, чтобы найти три функции перемещений, которые удовлетворяют внутри области К, занимаемой телом, дифференциальным уравнениям равновесия в перемещениях (2.25), а на границе области — граничным условиям (2.26). Динамическая задача ставится аналогично, однако перемещения зависят не только от координат, но и от времени т. е. функции должны удовлетворять дифференциальным уравнениям движения в перемещениях, граничным и начальным условиям.  [c.76]


Теория упругости как стройная научная дисциплина зародилась в начале XIX столетия, когда почти одновременно Л. Навье (1821) [54], А, Коши (1822) [40] и С. Пуассон (1829) [55] вывели общие уравнения равновесия и движения упругих тел и дали правильную постановку соответствующих задач. При этом допускалось, что перемещения точек тела весьма малы и что соотношения между напряжениями и деформациями линейны.  [c.9]

Рассмотрим колебания твердого тела, находящегося в потенциальном поле сил (гравитационном поле Земли, поле упругих сил и т. д.). Положение твердого тела при его колебаниях относительно положения равновесия будем определять шестью обобщенными координатами , т), б, ф, ф, первые три из которых являются координатами центра масс тела, а остальные — углами Эйлера, выбранными по одному из известных способов. В рассматриваемой задаче будем считать, что перемещения т), и углы б, г[), ф не малые, но такие, что в уравнениях движения твердых тел с приемлемой точностью могут быть сохранены только члены не выше третьего порядка относительно координат и их производных.  [c.264]

Подробный вывод этого уравнения дан В. В. Новожиловым 33]. Объемный интеграл берется по всему объему упругого тела, а поверхностный — по всей его поверхности. Если уравнение записать с учетом всех возможных упругих перемещений бы, би и бш, согласовав их с геометрическими связями, наложенными на упругую систему в случае равновесия, и с кинематическими связями в случае движения, то получится вариационное уравнение Лагранжа для упругого равновесия. В развернутом виде оно записывается так  [c.159]

В линейной теории упругости уравнения равновесия объемного элемента (будучи записаны в перемещениях) имеют вид (7.1) и, следовательно, движение упругого тела (если оставаться в рамках допущений классической теории) описывается уравнениями  [c.200]

Принцип возможных перемещений, положенный Лагранжем в основу механики, оказался одним из наиболее общих и плодотворных методов исследования механического движения и равновесия материальных тел, однако механика, являющаяся наукой о природе, не стала главой математического анализа. Задачи, относящиеся к теории упругости, теории пластичности, гидро- и аэромеханике, т. е. к механике деформируемых тел, в большем числе случаев получают ясное решение, если из необходимых уравнений классической механики твердого тела взять те, которые получаются методом возможных перемещений. И вообще, мне кажется, можно сказать наперед, что все общие принципы, которые еще могли бы быть открыты в учении о равновесии, представили бы собой не что иное, как тот же самый принцип возможных перемещений, рассматриваемый с  [c.34]


Обратимся теперь к исследованию равновесия и движения упругого твердого тела. Общие дифференциальные уравнения для этой задачи, при известных предположениях, уже составлены в 7 одиннадцатой лекции. Сохраним эти предположения и сделаем выводы из приведенных уравнений. Принятые там обозначения применим и здесь, только перемещения I, Л, 5 будем обозначать здесь через и, V, т. Таким образом, представим себе тело, точки которого могут быть приведены в такое относительное положение, что совокупные компоненты давления на них равны нулю. Состояние, в котором тело тогда находится, мы назовем естествгняым. Обозначим через х, у, г координаты точки тела, когда оно находится в каком-нибудь положении в своем естественном состоянии, а через х и, уV, 2 + ш — координаты той же точки в момент Р,и,о, ьу — бесконечно малы. Положим  [c.322]

Общие уравнения динамической устойчивости упругих систем. Пусть соотношение между частотами возбуждения и наименьшей собственной частотой в невозмущенном движении таково, что при нахождении невозмущенного напряженно-деформированного состояния допустимо использовать квазистатическое приближение и пренебречь перемещениями в этом состоянии. Тогда уравнения динамической устойчивости каждой конкретной упругой системы могут быть получены из уравнений нейтрального равновесия для задачи статической устойчивости добавлением далам-беровых сил инерции и заменой усилий (напряжений) невозмущенного состояния соответствующими функциями времени. Если необходимо учитывать диссипацию, то в уравнения добавляют также диссипативные силы.  [c.248]

Для вывода уравнений движения системы используем принцип Д Аламбера и рассмотрим равновесие системы с приложенными к ней силами инерции. На массу в произвольный момент времени I действуют сила упругой деформации подвески С121, сила упругой деформации пружины динамического гасителя С. (21 — 22), демпфирующая сила К (2, — Тз) и периодическая возмущающая сила / ( ). На массу действуют соответственно сила упругости С У. Х(21 — га) и демпфирующая сила К (21 — подвески динамического гасителя (21, г , 2а, 2а — соответственно перемещения и скорости масс и Ша) относительно положения равновесия, когда силы собственного веса уравновешены силами упругой деформации.  [c.38]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]


Эта система уравнений соответствует системе уравнений (2.2) для ид,еально упругой среды. Формулы (2.1), связывающие деформации с перемещениями, остаются в силе, так же как и уравнения равновесия (2.3). Следовательно, мы легко можем выписать соответствующее уравнение движения, отличающееся от (2.4) слагаемым, зависящим от скорости деформации.  [c.93]


Смотреть страницы где упоминается термин Уравнения упругого равновесия и движения в перемещениях : [c.29]    [c.323]    [c.236]   
Смотреть главы в:

Теория упругости  -> Уравнения упругого равновесия и движения в перемещениях

Курс теории упругости Изд2  -> Уравнения упругого равновесия и движения в перемещениях



ПОИСК



Упругие перемещения

Уравнение перемещений

Уравнения Уравнения упругости

Уравнения движения и уравнения равновесия

Уравнения движения равновесия

Уравнения равновесия в перемещения

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения упругого КА

Уравнения упругого равновесия в перемещениях

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте