Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы п основные действия с ними

Пресс двойного действия для получения изделий из листового материала глубокой вытяжкой (рис. 7.5,а — кинематическая схема б—структурная схема) должен иметь, кроме неподвижной матрицы 2 и пуансона 3, вспомогательный ползун 4, который заранее прижимает свободные края заготовки 1 к неподвижной матрице 2, чтобы они не собирались в складки во время вытяжки. Затем основной ползун 3 производит вытяжку, после чего оба ползуна поднимаются, деталь извлекается и устанавливается новая заготовка. Цикл происходит за один оборот вала 5, который приводится во вращение двигателем через редуктор. Следовательно, вал 5 является распределительным.  [c.214]


Данная глава посвящена усталостному повреждению низкопрочных стеклопластиков. В основном повреждения возникают под действием растяжения в той части системы армирования, которая перпендикулярна растягивающей нагрузке. Этот первый вид повреждения состоит в нарушении связи между стеклянными волокнами и полимерной матрицей. Он возникает под действием однократной или повторяющейся нагрузки и зависит от числа циклов. Дальнейшее развитие повреждений зависит от вида армирования. Последовательность повреждений до сих пор полностью не изучена и пока невозможно предложить всеобъемлющий набор конструкционных критериев, учитывающих состояния поврежденности.  [c.333]

В штампах для прессов двойного или тройного действия усилие на складкодержателе создается внешним ползуном (см. рис. 118 и 137). В упрощенной схеме штампа с жестким (щелевым) складкодержателем между складкодержателем и матрицей (рис. 116) должна быть равномерная щель г — (l,l- l,2)s. Прижим-склад-ко держатель в вытяжных штампах является универсальным средством торможения листового материала в процессе вытяжки. По требованию технологического процесса он применяется в двух основных исполнениях гладким и с введением в него дополнительных средств (ребер или порогов), которые усиливают торможение заготовки. Большинство листовых деталей малых габаритов (ориентировочно с наибольшим размером в плане до 200 мм) при толщине материала s 2 мм и детали о любым габаритом при толщине S > 2 мм вытягивают в штампах с гладким складкодержателем.  [c.418]

Вторичное квантование. В статистической механике приходится иметь дело с волновыми функциями, зависящими от огромного числа переменных, поэтому координатное представление неудобно для практического использования. Квантовые состояния многочастичных систем обычно описываются в представлении чисел заполнения которое также называется представлением вторичного квантования. Главным достоинством этого представления является то, что в нем симметрия Д/ -частичных волновых функций учитывается автоматически путем введения специальных операторов рождения и уничтожения. Действуя на квантовое состояние системы, эти операторы изменяют число частиц в одночастичных состояниях. Как мы увидим дальше, формализм, основанный на использовании операторов рождения и уничтожения, очень удобен для построения операторов динамических величин и приведенных ( -частичных) матриц плотности, которые играют исключительно важную роль в кинетической теории (см. главу 4). Мы обсудим основные идеи метода вторичного квантования, поскольку он будет часто использоваться в книге. Детальное изложение этого метода можно найти в любом современном учебнике по квантовой механике (см., например, [14, 79, 89, 125]).  [c.32]


Это один из основных методов переработки реактопластов в изделия. Сущность метода заключается в формовании изделий под давлением из пресс-материалов, нагретых до вязкотекучего состояния, непосредственно в полости формующего инструмента — между матрицей и пуансоном. В течение сравнительно короткого времени пребывания в этом состоянии к материалу прикладывается давление, действующее вплоть до окончательного отверждения расплава и оформления детали. В результате отверждения образуется сетчатая пространственная структура материала. Он делается жестким, неплавким и нерастворимым продуктом. Поэтому изделие извлекают из пресс-формы без охлаждения сразу  [c.153]

Сдвиг полос, по-видимому, также связан с отмеченным выше перекрыванием электронных облаков и изменением эффективного размера атома при его возбуждении. Большинство атомов металлов крупнее атомов матрицы, но они занимают один узел в кристаллической решетке матрицы (см. гл. 2) и поэтому "сжимаются" (под действием сил отталкивания). Если размер атома в возбужденном состоянии больше, чем в основном, то потенциальная энергия сил отталкивания, действующих на увеличившийся возбужденный атом, возрастает и повышает энергию электронного перехода.  [c.109]

На рис. 74 дана схема деформирования заготовки при вытяжке с утонением. Как видно из схемы, силы трения в очаге деформации, где заготовка сжимается между пуансоном и матрицей, имеют различные направления. Поскольку заготовка смещается относительно матрицы в направлении движения пуансона, силы трения, действующие на наружной поверхности заготовки, имеют направление, обратное направлению движения пуансона. Удлинение заготовки при утонении приводит к тому, что в очаге деформации она скользит вверх по пуансону, а силы трения на внутренней поверхности заготовки действуют в направлении движения пуансона. Силы трения на наружной поверхности заготовки способствуют увеличению растягивающих напряжений, действующих в стенках протянутой части заготовки, а силы трения на внутренней поверхности заготовки как бы разгружают опасное сечение, уменьшая растягивающие напряжения в стенках протянутой части заготовки. Эта особенность вытяжки с утонением стенки и является основной причиной наличия сравнительно больших допустимых деформаций и значительного приращения относительной высоты заготовки за один переход.  [c.200]

Теперь мы видим, что оператор М ф) по отношению к его действию на ф, мало чем отличается от макроскопического прибора он осуществляет коллапс волновой функции по правилам теории измерений квантовой механики, т.е. в одно из взаимно ортогональных состояний. Если трактовать эти измерения в терминах превращения чистого ансамбля в смешанный, то нетрудно видеть, что матрица плотности р х,х ) изменяется при таких измерениях очень мало. В самом деле, осциллирующая зависимость от х - х матрицы плотности определяется, в основном, не размерами волновых пакетов, а максвелловским распределением по импульсам. Поэтому описание смешанного состояния в терминах матрицы плотности не является достаточно чувствительным, чтобы определить, происходят ли в самом деле коллапсы усреднение по ансамблю легко уничтожает соответствующую очень "деликатную" информацию.  [c.143]

Введенные выше векторы и матрицы, а также установленные связи между ними позволяют записать полную систему разрешающих уравнений для основной задачи расчета стержневых систем. Эти уравнения можно разделить на три группы. Первую группу составляют уравнения равновесия узлов и элементов под действием узловых усилий. Вторая группа является уравнениями неразрывности перемещений в узлах. Третья группа уравнений представляет собой закон упругости, связывающий между собой узловые перемещения и усилия. Такое подразделение разрешающих уравнений характерно для любого раздела механики твердого деформируемого тела. Как и сами уравнения, оно связано с механическими, геометрическими и физическими принципами, которые лежат в основе рассматриваемых задач.  [c.59]

В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]


Таким образом, на всех стадиях определения скоростей и моментов используется один и тот же алгоритм, позволяющий легко автоматизировать весь процесс вычисления. Его основной недостаток состоит в том, как уже отмечалось выше, что он производит много лишних действий, связанных с умножением и сложением нулей при вычислении определителей ред-козаполненных матриц. Применение направленных графов и соответствующего математического аппарата [2, 21] дает возможность избавиться от этого недостатка и тем са.мым значительно сократить машинное время решения задачи.  [c.98]

Из пяти основных механизмов упрочнения суперсплавов — твердорастворного, дисперсного (дисперсионного), зернограничного, деформационного и текстурного — от природы сплава зависят первые три. В двух первых случаях упрочнение объясняется действием внутренних напряжений, возникающих в результате внедрения в упругую матрицу либо растворенных атомов (твердорастворное упрочнение), либо частиц второй фазы. Если частицы второй фазы выделяются из твердого раствора при старении, то они называются преципитатами , а упрочнение - дисперсионным. Если же дисперсные частицы искусственно вводятся в сплав, то они называются дисперсоидами , а упрочнение -дисперсным. В этом втором случае речь идет об искусственных компо-  [c.303]

Результаты Ляпунова, соответствующие случаю одной степени свободы, были обобщены М. Г. Крейном и В. А. Якубовичем на любой конечномерный случай. Можно сохранить прежнюю форму записи, считая у вектором (одностолбцовой матрицей) в пространстве любого числа измерений, р t) — матрицей соответствующего порядка. Однако, как ни существенно обобщение на многомерный случай, для анализа колебательных систем в механике сплошных сред оно недостаточно. Например, исследование динамической устойчивости jrnpyroro тела, находящегося под действием параметрического и периодически изменяющегося во времени возмущения, требует перехода от конечномерного случая к бесконечномерному. Первые результаты в этом направлении были получены В. И. Дергузовым. Выяснилось, что основные результаты, полученные в конечномерном случае, переносятся и на бесконечномерный случай Переход к бесконечномерному случаю потребовал существенного видоизменения методики интересно отметить, что новая методика позволила углубить теорию и для систем с конечным числом степеней свободы При этом полезным оказался переход от уравнения (d) к белее общему операторному уравнению вида  [c.133]

Применение покрытий при горячей деформации металла должно по возможности обеспечивать снижение усилий штамповки и прессования заготовок, износа инструмента, теплоизоляцию заготовок и инструмента, высокое качество поверхности получаемых полуфабрикатов. Защитные покрытия, например содержащие стеклофазу, обладают при высоких температурах свойством уменьшать коэффициент трения и износ трущихся поверхностей заготовок и инструмента (штампов, матриц, фильер и т. п.). Это свойство проявляется, когда между трущямися поверхностями имеется достаточно толстый слой покрытия, содержащего жидкую фазу. Смазочное действие покрытий в этом случае определяется жидкостным трением и подчиняется законам гидродинамики. Основным параметром, определяющим смазочное действие жидкости в условиях, когда внешнее трение переходит во внутреннее трение жидкости, является вязкость жидкости. Смазочное действие покрытий определяется тем, что они разъединяют трущиеся поверхности и способствуют переходу от внешнего трения к внутреннему вследствие вязкого или пластичного течения слоев самих покрытий. В некоторых работах отмечалось, что толщина слоя стеклосмазки, а не вязкость определяет ее смазочное действие. Покрытия, главное назначение которых состоит в защите от окисления при нагреве, могут уменьшать трение, износ инструмента, усилия при деформировании металла. Одновременно с указанным защитно-технологические покрытия повышают качество поверхности заготовок, способствуют получению более однородных механических свойств, служат как теплоизолятор, уменьшают скорость охлаждения заготовок и разогрева инструмента.  [c.113]

Для вытяжки сложных деталей применяют специальные прессы двойного (рис. IV.42, б) и тройного действ п я. Основной конструктивной особенностью этих прессов является наличие двух (иногда трех) ползунов. Основное рабочее усилие создает внутренний (вытяжной) ползун 1, связанный шатуном с коленчатым валом. Наружный (прижимной) ползун 2 приводится в действие кулачковым или коленчато-рычажным ме-хан1хзмом, приводимым от этого же вала. Наружный ползун начинает движение вниз первым. Достигнув крайнего нижнего положения, он останавливается, зажимая края заготовки прижимом-складкодержателем 3. За наружным ползуном через некоторый интервал опускается внутренний ползун с пуансоном 4, выполняет вытяжку изделия 6 и первым начинает подниматься вверх. В течение всего процесса вытяжки наружный ползун остается неподвижным, обеспечивая съем детали с пуансона при обратном ходе внутреннего ползуна. После подъема наружного ползуна деталь выдается из матрицы 5 нижним выталкивателем. У прессов тройного действия имеется и третий ползун с нижним приводом, располагающийся с нижней стороны стола пресса (под полом). Прессы двойного и тройного действия выпускаются с усилием до 2500 т (24,5 МН). Для автоматизации процессов штамповки в массовом производстве широко применяют прессы-автоматы различных конструкций. Многопозиционные прессы-автоматы производят автоматическую последовательную штамповку полых изделий из ленты в восьми и более штампах. Такие прессы обладают высокой производительностью (до 2000 детаелей в час) и представляют собой полностью автоматизированную штаьшовоч-ную линрш, которая может быть легко перестроена на производство различных деталей.  [c.238]

При вырубке-пробивке неметаллических материалов с нагревом на рассеивание размеров одновременно оказывают влияние два основных фактора температура и естественная усадка. При этом характер их влияния на точность получаемых деталей различен. При вырубке наружного контура вследствие снятия упругой деформации размеры увеличиваются, а в результате остывания уменьшаются при пробивке отверстий эти два фактора действуют в одном направлении. Характер взаимодействия этих факторов подробно изучен Г. И. Хесиным и А. П. Боткиным [75], а также Ю. М. Клинцовым [44]. Они показали, что при вырубке наружных контуров их размеры" могут быть больше, меньше или равны размерам матрицы.  [c.142]


На фиг. 317 показан штамп для изготовления специальной кнопки за девять рабочих переходов. За первый переход пуансон 1 пробивает фасонное отверстие, создающее лучшие условия при вытяжке и используемое для фиксирования ленты (полосы) при помощи фиксаторов 2. Последующие два перехода из конструктивных соображений холостые. На четвертом переходе производится первая вытяжка пуансоном 3. Последующие шесть переходов вытяжки осуществляются пуансонами 4, 5, 6, 7, 8, 9. На девятом переходе деталь вырубается пуансоном 10. Подъем полосы для перемещения с одного перехода на другой осуществляется при помощи выталкивателей 11, действующих от пружин череч планку 12. Если полоса остается на пуансонах, она снимается съемником 13 под действием пружин. Сх> поставляя этот штамп с ранее приведенными, видим, что основное отличие его состоит в том, что матрицы расположены в верхней части штампа, что возм1ожно, если в штампуемой детали отсутствуют таюие операции, как пробивка отверстий в донной части вытягиваемой детали. Расположение матриц в верхней части штампа вызывает дополнительные трудности в части размещения устройства для выталкивания полуфабрикатов из матриц.  [c.475]

Возможность повышения механических свойств сплавов систем Л1—Си и А1—Си—Мп малыми добавками кадмия, олова и индия была установлена в работах отечественных и зарубежных исследователей [7, 14, 15—20]. Она основана на открытии Дж. Нокком в 30-х годах дополнительного эффекта упрочнения сплавов системы А1—Си при искусственном старении в результате введения добавок кадмия, олова и индия. Благодаря действию малых добавок кадмия в указанных системах основная упрочняющая фаза 0 образуется в виде более тонких пластинок, чем в сплавах без кадмия, т. е. кадмий является стабилизатором роста фазы 0. Стабилизация этих тонких выделений, по мнению авторов работы [21], происходит благодаря сегрегации атомов кадмия у поверхности раздела фазы 6 и матрицы.  [c.196]

Для Получения хорошего стереотипа необхо-,дпма матричная папка высокого качества, ибо она в процессе стереотипирования выполняет две основные функции. В стадии тиснения ма- трицы она должна воспринимать под действием минимального давления обратно-рельефное изображение оригинальной печатной формы. Поэтому она должна быть максимально пластична и податлива. В стадии же отлива она. должна выдержать без деформации значительное число отливов, т. е. она д. б. твердой, неподатливой. Проблема разрешается применением папки из бумажной массы, к-рая при б. или м. сильном увлажнении приобретает достаточные пластич. свойства и принимает под. действием давления рельефный оттиск. После высушивания она делается твердой и способной выдержать достаточное число отливов без. деформации. В разрешении проблемы имеется узкое место, т. к. переход только что оттиснутой матрицы из влажного состояния в сухое, пригодное для отлива, сопровождается изменениями размеров, в нек-рых случаях выходящими из пределов допустимого отсюда получается искажение размеров отлитого стереотипа по сравнению с размерами оригинальной формы. Техника преодолевает это узкое место многими путями. Уменьшение свойства папки деформироваться при изменении содержания влаги м. б. доведено до пределов допустимого. Увеличивая пластич. свойства самой массы матричной папки, увеличивая давление, применяемое при матрицировании, можно применять папку минимально влажную. Наконец высушивание влажной только что оттиснутой матрицы под давлением пресса уменьшает конечную усадку. Все эти пути дают разрешение проблемы за счет каких-либо потерь и поэтому применяются в различных комбинациях в зависимости от того, какие потери в данном производственном случае менее ошутительны.  [c.48]

Решающее значение для качества матрицы имеет характер поверхностного слоя матричной папки. Он д. б. гладким, плотным, но пластичным, сопротивляющимся непосредственному действию горячего гарта. Поэтому в процессе изготовления матричной папки поверхностному слою придают иной состав, чем другим слоям, и ли наносят на готовые листы папки специальный поверхностный слой (накрашивание). Последнее вряд ли рационально, т. к. не улучшает пластич. свойств папки, не уменьшает в достаточной степени повреждений шрифта, а лишь закрашивает дефекты поверхности и может несколько повысить огнеупорность путем нанесения огнеупорного состава. Матричная папка м. б. фабрично изготовлена для любых условий матрицирования и отлива, даже для выколачивания. Поэтому готовая папка вытесняет ее изготовление в цехе.Стандартность папки имеет очень большое значение для С, и печатания, а добиться ее гораздо легче путем фабричного изготовления, чем цехового. Однако изготовление (клеение) матричной массы в цехе еще имеет место для процессов выколачивания матриц. При изготовлении матричной массы в цехе необходимо более всего обращать внимание на стандартность качества бумаги и клейстера, применяемого для склейки. Четкое очко матрицы получается применением для поверхностных слоев шелковой бумаги. Самое важное—достаточное и однородное качество шелковой бумаги, т. к. от нее зависит качество очка стереотипа. Чересчур жесткая, она будет выщипываться при отливе, т. к. она плохо принимает клейстер и плохо склеивается чересчур пористая пропускает клейстер. В том и другом случае очко будет рябым. Шелковая бумага должна иметь ровную и гладкую поверхность, структура д. б. длинноволокнистой, однородной, без узелков, дырочек и т. п. с равномерным (необлачным) молочным просветом и прочная на разрыв. Бюварная бумага обеспечивает возможность достаточно глубокого очка матрицы, она дает основную пластичную массу матричного картона. Она д. б. плотной, не слишком мягкой, без узелков и способности их образовывать при склеивании.  [c.48]

Металл-пигментированные краски иа основе цементоподобных связующих веществ. Цементирующие краски были получены в начале 40-х годов в лаборатории автора. Хорошо известно, что пастообразная смесь окиси цинка с раствором 2пС12 или паста окиси магния с раствором хлористого магния обладают цементирующими свойствами любая смесь, отформованная в желаемую форму, осаждается в виде твердой массы, содержащей основный хлорид. Цинковый цемент использовался в первое время в зубоврачебной практике, а магниевый цемент предпочитался для настила полов в домах до тех пор, пока не было открыто, что стальные трубы под его действием подвергаются коррозии. Если, вместо окиси цинка смешать порошок металлического цинка в пасту с раствором хлористого магния, коррозия цинка приводит к образованию Mg (ОН) 2, как катодного продукта, который затем взаимодействует с хлористым магнием, образуя цементирующий основный хлорид магния или же он может взаимодействовать с хлористым цинком, образующимся в результате анодной реакции, давая цементирующий основный хлорид цинка. В любом случае, принимая, что металлический цинк присутствует в избытке вначале, мы будем иметь массу частичек металлического цинка в контакте друг с другом, которые создают цементирующую матрицу. Вместо хлорида магния используется раствор хлорида бария действительно, различные хлориды вызывают аналогичное действие образование цементирующих соединений для ряда случаев исследовано Майном и Сорнхилом. Массы, содержащие металлический цинк, соответствующую соль (хлорид или в некоторых случаях хлорат, который быстро восстанавливается) и избыток порошка железа, были разработаны автором в качестве защитных (быстро оседающих) металлических составов, которые, когда они твердые, обладают металлическими свойствами (некоторые были магнитными). Вскоре было открыто, что основным практическим значением таких реакций является получение краски, которая в сухом состоянии будет содержать частички металлического цинка в контакте друг с другом. Было приготовлено несколько подобных красок, различных по составу и предназначенных для использования в различных условиях. Табл. 21 показывает состав трех лучших цементирующих красок. Первая была использована в условиях, когда желательно возможно большее содержание цинка, вторая— применяется в промышленных условиях, где желательно минимальное содержание цинка, последняя используется в Британском адмиралтействе, как это указывается на стр. 535, особенно в районах, где выпадают часто дожди и дуют ветры. Цементирующие краски по-существу являются лучшими красками они быстро осаждаются, давая слой, на котором могут быть нанесены другие покрытия. Цементирующий слой становится твердым и хорошо прилипает к поверхности металла. Однако он чрезвычайно порист и защита  [c.565]



Смотреть страницы где упоминается термин Матрицы п основные действия с ними : [c.95]    [c.43]    [c.166]    [c.139]    [c.162]    [c.121]    [c.216]    [c.55]   
Смотреть главы в:

Введение в теорию устойчивости движения  -> Матрицы п основные действия с ними



ПОИСК



Матрица основная



© 2025 Mash-xxl.info Реклама на сайте