Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория электрохимического растворения

Корродирующая поверхность металла является короткозамкнутым многоэлектродным гальваническим элементом. Материальный эффект электрохимического разрушения (растворения) сосредоточен на анодных участках корродирующего металла. Анодное растворение металла возможно при одновременном протекании катодного процесса - ассимиляции освободившихся электронов на катодных участках металла. Согласно классической теории электрохимической коррозии, участки анодной и катодной реакции пространственно разделены, и для протекания процесса коррозии необходим переток электронов в металле и ионов в электролите. Однако пространственное разделение анодной и катодной реакции оказывается энергетически более выгодным, так как анодные и катодные реакции могут локализоваться на тех участках, где их протекание более облегчено. Поэтому в большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла.  [c.7]


Важно знать, будет ли в вершине коррозионной трещины присутствовать жидкая вода. Если ее нет, то все теории КР, основанные на электрохимическом растворении металла, окажутся несостоятельными, включая те, которые объясняют неодинаковую чувствительность сплавов различием электрохимических потенциалов выделений и фаз, расположенных по границе или вблизи границы зерен. Протекание процесса КР только лишь в газовой атмосфере и сильная зависимость скорости роста трещины от давления водяных паров вызывают сомнения в гипотезе, что КР происходит благодаря диффузии реагентов через металл за фронт трещины (галоидных ионов, которые ослабляют связь между зернами в вершине трещины).  [c.289]

Из теории микроэлементов вытекает, что при отсутствии на поверхности металла разнородных участков процесс коррозии не будет иметь места. Опыты с чистыми металлами (дистиллированным цинком) показывают, что их скорость коррозии значительно меньше, чем технического металла. Однако имеются гомогенные сплавы (амальгамы), которые в то же время разрушаются очень быстро. Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкиным была выдвинута теория гомогенно-электрохимического растворения металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического процесса растворения металлов.  [c.40]

Согласно представлениям адсорбционной теории пассивно-ст [85], скачок тока в момент повышения потенциала отвечает возросшей скорости перехода катионов металла в раствор [реакция (с)], определяемой законами электрохимической кинетики. Скорость этого процесса по мере посадки кислорода понижается до стационарного значения. В последнее время считают возможным протекание прямого электрохимического растворения металла также и через фазовые оксидные пленки [86—88]. Согласно пленочной теории пассивности [89], мгновенный скачок тока и его спад при резком смещении потенциала в положительном направлении объясняются возросшей скоростью образования пленки (а), а ионы металла попадают в раствор только в результате последующего химического растворения оксида (Ь).  [c.39]

С научной точки зрения разбор и классификацию всех существующих разнообразных методов защиты металлов от электрохимической коррозии можно осуществить не на основе условий их применения или технологии осуществления, как это сделано выше, а на базе приложения теории электрохимической коррозии. Для этой цели необходимо правильно выявить механизм защитного действия каждого метода защиты, т. е установить на какую ступень в цепи последовательных процессов электрохимического растворения металла данный метод оказывает основное торможение.  [c.194]


Развивая теорию электрохимических реакций при обжиге грунта, Л. Д. Свирский показал, что основным фактором, определяющим течение процессов при обжиге грунта, является микронеоднородность поверхности стали и расплава. На поверхности стали имеются так называемые катодные и анодные участки. Различная плотность упаковки ионов в решетке, границы между зернами, неоднородный состав, включения легирующих добавок, наличие напряжений в металле и другие причины обусловливают различия энергетического состояния разных участков поверхности стали. При соприкосновении с электролитом на анодных участках происходит растворение железа, на катодных — разряд избыточных электронов. Чем ближе друг к другу расположены катодные и анодные участки, тем равномернее идет коррозия.  [c.62]

В теории необратимых электродных потенциалов металлов А. Н. Фрумкина (см. с. 176), в которой сформулирован электрохимический механизм саморастворения (коррозии) металлов в электролитах, рассматривалось растворение металла с однородной (гомогенной) поверхностью, т. е. предполагалось, что скорость протекающих на поверхности электрохимических реакций одинакова на всех участках и что все точки поверхности обладают одним и тем же значением потенциала (т. е. что поверхность является строго эквипотенциальной). Автор этой теории считает, что такое допущение вполне законно для жидкого металла, например для поверхности ртути или амальгамного электрода, которая может служить образцом однород-. ной поверхности. Относительно  [c.185]

Теория замедленного разряда приложима ко всем электрохимическим процессам с замедленной электрохимической стадией разряда или ионизации и изложена выше (см. с. 198) применительно к процессу растворения металла. Именно при изучении катодного процесса разряда водородных ионов и его поляризации складывались основные положения электрохимической кинетики электродных процессов.  [c.253]

Предложенное описание коррозионных процессов справедливо лишь в том случае, если поверхность металла равнодоступна как для анодной, так и для катодной реакций. Для металла с идеально однородной поверхностью (например, для жидкого металла) выполнение такого условия не подлежит сомнению. Для обычных твердых (даже очень чистых) металлов из-за неизбежной неоднородности их поверхности выполнение указанного условия неочевидно. Это явилось причиной появления на первых этапах развития учения об электрохимической коррозии металлов представлений, получивших название теории микроэлементов. Теория предполагала, что катодное восстановление окислителя (например, выделение водорода) может происходить только на некоторых участках поверхности корродирующего металла, а растворение металла возможно на других участках, так что существует пространственное разделение катодной и анодной реакций, позволяющее рассматривать коррозионный процесс как функционирование большого числа короткозамкнутых гальванических элементов .  [c.86]

Описанные работы составили основу современной теории растворения металлов. Из них вытекала правомерность приложения к коррозионным процессам, протекающим на твердых металлах, количественных законов электрохимической кинетики.  [c.87]

По второму электрохимическому варианту этой теории пассивность объясняется электрохимическим торможением анодного процесса растворения металла. Предполагается, что адсорбция атомов кислорода на анодных участках способствует торможению процесса растворения металла, так как кислородные атомы образуют электрические диполи за счет частичной ионизации кислородного атома электродом металла.  [c.489]

Эта теория, не отрицая возможности пленочного торможения анодного процесса при возникновении явления пассивности, утверждает, что основной причиной торможения анодного процесса является более тонкий электрохимический механизм. Предполагается, что адсорбция атомов кислорода (а иногда и других атомов) ведет к такой перестройке скачка электродного потенциала двойного слоя, которая сильно затрудняет протекание анодного процесса растворения металла .  [c.16]

Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах.  [c.357]


Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe lg из трещины, образованной в напряженном монокристалле ujAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли-  [c.138]

Во всяком случае, очевидно, что механизм электрохимического растворения не может объяснить специфичность коррозионных сред, представленных в табл. 7.1. В принципе, множество электролитов с одинаковой электропроводимостью могли бы вызвать КРН, но этого не происходит. К тому же электрохимическая теория не в состоянии удовлетворительно объяснить заметное ингибирование КРН добавлением небольших количеств неокисляющих ионов, таких как СНдСОО", в среды, используемые для ускоренных испытаний. Имеются и другие трудности к примеру, описанное ранее растрескивание сенсибилизированной нержавеющей стали 18-8—транскристаллитное, —несмотря на четко выраженные возможности электрохимического растворения меж-  [c.139]

Современная теория электрохимической коррозии металлов основывается на том, что не только чистый металл, но и металл с заведомо гетерогенной поверхностью корродирует в электро-ште как единый электрод согласно закономерностям электрохимической кинетики. На его поверхности одновременно и независимо друг от друга протекают анодная и катодная реакции, в совокупности составляющие процесс коррозии. В то же время роль электрохимической гетерогенности процесса электрохимической коррозии велика, хотя в ряде сл> чаев повышение гетерогенности приводит не к увеличению скорости коррозии, а, наоборот, к ее снижению. Качественно и количественно роль гетерогенности проявляется в кинётгмеских Характеристиках анодной и катодаой реакций. При коррозии технических сплавов, для которых характерен высокий уровень электрохимической гетерогенности поверхности, возможно неравномерное распределение скорости анодного процесса на поверхности сплава, обусловливающее преимущественное растворение отдельных фаз, что приводит к локализации коррозии [25, 27].  [c.29]

По П. П. Строкачу, электрохимическое растворение металлов состоит из двух основных процессов — анодного и химического растворения в результате взаимодействия с окружающей средой. Растворению металла анода способствуют повышение температуры воды, присутствие в ней ионов-депассива-торов, наложение постоянного электрического тока, повышение скорости движения воды по отношению к поверхности металла. Поэтому выход алюминия по току может достигать 120% и более. В соответствии с теорией электрохимической коррозии при использовании в качестве анода железа или алюминия в природной воде протекают реакции анодного растворения и образования гидроксидов этих металлов. На катоде из железа или алюминия в природной воде происходят деполяризация мигрирующими ионами, деполяризация нейтральными молекулами, восстановление ионов металлов и нерастворимых пленок, а также органических соединений. На алюминиевом катоде при pH 10... 12 в прикатодном слое вероятна реакция взаимодействия алюминия с водой с образованием гидроксида алюминия и водорода во время электролиза и растворения защитной пленки оксида алюминия. Из вышеуказанных катодных процессов в природной воде главенствующим является водородная и кислородная деполяризация.  [c.102]

При изучении прочности стали в коррозионных средах прежде всего необходимо ознакомиться с некоторыми положениями теории электрохимической коррозии. Эта теория, развитая трудами советских ученых — Г. В. Акимовым [1, 2j, Н. А. Изгарышевым [371, Н. Д. То-машовым [151] и др., рассматривает электрохимическую коррозию как результат работы гальванических элементов. Работа гальванических элементов обусловливается течением двух взаимно связанных процессов — анодного и катодного. При анодном процессе наблюдается переход ионов металла в раствор, т. е. электрохимическое растворение анодных участков металла при катодных—ассимиляция электронов на катодных участках металла каким-либо содержащимся  [c.6]

Научно-теоретической базой для развития науки о коррозии и защите металлов и, в частности, для разработки научных принципов создания коррозионностойких сплавов несо мненно явились более ранние исследования выдающихся советских ученых, являющихся основоположниками науки о защите металлов. Здесь в первую очередь надо отметить академика Кис-тяковского, разработавшего фильмовую теорию коррозии [1], члена-корреспондента Изгарышева [2], изучившего ряд важных вопросов электрохимической коррозии металлов академика Фрумкина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомо-генно-электрохимического растворения металлов [3, 4] и особенно члена-корреспондента АН СССР Акимова [5, 6], заложившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозиоии-стов.  [c.10]


Гипотеза невозможности растворения гомогенных металлов оказывается в противоречии с опытом и термодинамикой. Для объяснения электрохимического механизма растворения амальгам А. Н. Фрумкиным была выдвинута теория гомогенноэлектрохимического растворения металлов, не исключающая, а дополняющая теорию микроэлементов — теорию гетерогенно-электрохимического раство-ренияметаллов.  [c.32]

Правильность электрохимической теории фосфатирования подтверждается рядом работ [35, 36]. Образованию фосфатной пленки предшествует электрохимическое растворение металла, сопровождаемое выделением водорода Ме - - 2НзР04- Ме(Н2Р04)2 + На. Вследствие уменьшения при этом содержания в растворе Н3РО4  [c.13]

Согласно новым взглядам некоторых советских ученых, вносящим принципиальные изменения в классическую теорию электрохимической коррозии, даже если металлическая поверхность абсолютно электрохимически гомогенна, все же должно происхвт дить растворение металла.  [c.27]

Поведение металлов и сплавов в отношении коррозии может быть объяснено современной теорией электрохимической коррозии. По этой теории металлы и сплавы, всегда химически и физически неоднородные, рассматриваются как состояш,ие из комплекса анодных и катодных участков, представляюших микроскопические гальванические пары. Коррозию в электролитах можно рассматривать как процесс, протекающий на границе металл — электролит, в результате которого происходит растворение анодных участков металлов и сплавов.  [c.248]

Электрохимическая теория фосфатирования достаточно полно описывает механизм образования одно-, двух- и трехзамещенных фосфатов, однако не учитывает гетерофазность протекания процесса, полимерной природы образующегося слоя покрытия при повышенной температуре и связи этого механизма с кинетикой процесса. Сопоставление кинетики фосфатирования и кинетики формирования полифосфатной пленки при газофазном синтезе на поверхности керамического материала (рис. 7.3 и 7.7) дало возможность выявить определенную общность механизма данных процессов и их отдельных стадий. Отличается лишь первый участок кинетической кривой, характеризующий электрохимическое растворение металла в фосфатирующем растворе, что не характерно для газофазного синтеза. Кроме того, в случае жидкофазного синтеза (фосфатирование), по-видимому, возможен поликонденсационный (за счет функциональных —ОН-групп) или смешанный механизм формирования структуры полифосфатной пленки, а в газофазном синтезе преобладает поли-меризационный механизм (за счет раскрытия цикла Р4О10).  [c.270]

Сторонники теории обеднения [48, 49] считают, что в процессе быстрого охлаждения ферритных сталей происходит выпадение вторичных фаз по границам зерен, обеднение пограничных областей хромом и, как следствие этого, снижение пассивности пограничных областей. Определенную роль могут играть неравновесные карбиды с повышенным содержанием железа, а также напряжения, возникшие в результате их выделения. Есть основания полагать, что степень обеднения и его эффективность в электрохимическом растворении ферритного металла значительно меньше, чем аустенитного, так как скорость диффузии хрома, а следователь но, и выравнивание его концентрации по телу зерна в первом случае выше, чем во втором Moлiнo полагать [35, 38], что при высокотемпературном нагреве хромистых ферритных сталей углерод и азот, находящиеся е структурно-свободных карбидах (карбонитридах), растворяются в феррите в количествах, на много превышающих предел их растворимости при комнатной температуре. При последующем быстром охлаждении они частично фиксируются в виде пере сыщенного твердого раствора, вызывая перенапряженность и искажение решетки. Неполное выделение карбидов (карбонит-ридов), когда сохраняется когерентная связь атомов с материнской решеткой, также вызыва-  [c.55]

Возникшая вследствие тех или иных факторов электрохимическая гетерогенность служит причиной дифференциации поверхности на катодные и анодные участки. При этом, согласно старой теории электрохимической коррозии, участки с более отрицательным потенциалом образуют аноды и на них протекает только анодный процесс, участки с более положительным потенциалом делаются катодами и на них протекает только катодный процесс. Такое утверждение идентично также другому следствию старой электрохимической трактовки, а именно, что абсолютно электрохимически однородная металлическая поверхность не должна электрохимически растворяться. Подобные мнения в более или менее определенной форме высказывали многие известные коррозионисты, например Пальмаер, Центнершвер, Тиль, Мюллер. У нас в значительной мере придерживался этого взгляда также Г. В. Акимов. Прямая экспериментальная проверка этого положения почти невозможна, так как нельзя получить полностью электрохимически однородную поверхность и, тем более, поддерживать ее в таком состоянии в растворе. Хотя в ряде случаев растворения металлов (например, 2п в НгЗО ) наблюдается сильное уменьщение скорости растворения металла (иногда в сотни раз) с увеличением степени чистоты металла, однако мнение  [c.148]

А. Н. Фрумкин (1932 г ), Вагнер и Трауд (1938 г.). Я- В. Дурдин (1939 г.), А И. Шултин (1941) г.. Я- М. Колотыркин (1946 г.) и ряд других исследователей считают, что анодный и катодный процессы могут происходить на одном и том же участке металлической поверхности, чередуясь во времени. Этот гомогенный путь протекания электрохимической коррозии металлов вытекает из приведенной выше теории необратимых (стационарных) потенциалов металлов и может иметь преобладающее значение при растворении амальгам и особо чистых металлов.  [c.177]

Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии.  [c.71]

Некоторые исследователи считают, что причиной КР углеродистых и коррозионно-стойких сталей может быть поглощение водорода у вершины развивающейся трещины. Это предположение связано с подкислением раствора в трещине, установленное экспериментально. Однако в этом случае трудно объяснить положительное влияние катодной поляризациии на КР как при потенциалах отрицательнее, так и положительнее потенциала водородного электрода. Существует и гипотеза микроструктур-ных превращений, происходящих под действием напряжений и интенсивно растворяющихся в коррозионной среде, образуя зародышевые трещины КР. Однако эта гипотеза может быть пригодна для ограниченного числа сплавов, в которых возможны подобные структурные превращения. Наиболее экспериментально обоснованной представляется электрохимическая теория КР, согласно которой основным фактором развития трещины является ускоренное анодное растворение металла в вершине трещины.  [c.67]

Развитие трещины КР по электрохимической теории можно рассматривать как электрохимический процесс, сильно интенсифицированный наложенными напряжениями растягивания, т. е. как работу коррозионной пары с малополяризуемым анодом. Катодом такой пары является боковая поверхность трещины и частично внешняя поверхность металла. Эффективным анодо.м является вершина трещины. Такой анод трудно поляризуем, поскольку при развитии трещины обнажаются новые незащищенные окисными слоями участки металла, а также увеличивается скорость анодного растворения из-за напряженного состояния металла. В таких условиях может наблюдаться очень большая скорость развития трещины (0,5—2,5 мм/ч и более).  [c.68]


В обобщенном виде основные положения этой теории состоят в следующем. Пластическая деформация поверхностных микрообъемов приводит к активации коррозионных процессов па этих участках, Коррозия усиливает избирательную способность напряжений, быстрее выделяет слабые места и ускоряет их развитие. Локализация коррозионных процессов приводит к образованию коррозионных повреждений, являющихся эффективными концентраторами напряжений — источниками зарождения трещин усталости. В условиях электрохимической коррозии происходит усиленное растворение металла в острие трещины вследствие работы пары анод—острие, катод—стенка трещины. При этом коррозия значительно облегчает продвии ение трещины, помогая преодолевать препятствия в виде скопления дислокаций, границ зерен и т. п.  [c.81]

Разновидностью электрохимической концепции является так называемая пленочная [74], в свете которой углубление уже возникшей трещины связано с деформационным разрывом оксидной пленки в ее вершине. При этом в трещине возникает гальванически элемент, в котором анодом служит активно растворяющаяся вершина трещины, где металл оголен вследствие разрыва там пленок. Катодные процессы сосредоточены на берегах трещины. Согласно пленочной теории, пластическая деформация металла препятствует восстановлению оксидной пленки в вершине трещины, что и обусловливает постоянное локальное растворение там металла. Предполагается, что разрыв оксидной 1шенки и оголение металла или деформационные изменения свойств Ш1енки наблюдаются в основном при грубом скольжении.  [c.57]

Для теории коррозионных процессов, происходящих при участии в катодном процессе кислорода, наибольший интерес. представляет тот факт, что скорость катодного процесса электрохимического восстановления кислорода, как правило, регулируется не кинетическими, а диффузионными факторами. Это обстоятельство налагает специфические черты на общий ход коррозионного процесса, когда он протекает с катодным контролем, т. е. его скорость преимущественно или полностью зависит от скорости протекания катодной стадии ассимиляции элёктронов. Скорость коррозии при этом полностью определяется величиной диффузионного тока по кислороду, будучи в зависимости не от электрохимических свойств данного металла, а от условий переноса молекул растворенного кислорода к его поверхности.  [c.92]

Пленочной теории пассивности противоречит обнаруженное Эршлером резкое торможение скорости растворения, платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем,  [c.119]

Сейчас уже трудно сказать, кто и когда впервые открыл явление цементации. Скорее всего это произошло на примере вытеснения меди из ее растворов железом - явления эффективного, но не такого простого, каким оно кажется вначале. Древние алхимики процесс цементации называли трансмутацией. Начало исследований по цементации благородных металлов цинком относят к первой половине Х1Хв. [ 5,6]. Так, в августе 1843 г. в журнале Отечественные записки была помещена статья А.Ф.Грекова с сообщением о разработанном им способе . .. золочения, серебрения и платинирования электрохимическим путем без гальванического снаряда или батарей . В частности, в статье отмечалось, что цинковая пластина, опущенная в цианистый раствор золота, покрывалась слоем металлического золота. Позднее, в 1865 г., Н.Н.Бекетов, предложивший впервые ряд напряжений металлов, заложил научные основы электрохимической природы процессов цементации. В настоящее время наиболее распространенной является коррозионная модель процесса цементации [ 7-10]. Согласно этой теории, процесс цементации рассматривают как аналог короткозамкнутого коррозионного гальванического элемента, при работе которого анодные участки металла растворяются, а на катодных участках происходит разряд ионов извлекаемого металла. На рис. 1 показаны два варианта структуры цементационных элементов для различных металлов-цементаторов, отличающихся друг от друга активностью. Так, например, в процессе цементации меди железом происходит растворение железа на анодных участках и осаждение меди на катодных участках. При этом масса и размер частиц металла-цементатора уменьшаются, а толщина слоя меди увеличивается.  [c.4]

По современным представлениям этот процесс является многостадийным и протекает с участием компонентов раствора (молекул воды, гидроксилионов, анионов). В соответствии с теорией, развиваемой Я. М, Колотыркиным с сотрудниками [21—26], процесс анодного растворения металла включает в себя Стадии химического или адсорбционно-химического взаимодействия поверхностных атомов с компонентами агрессивной среды. В результате этого образуются промежуточные каталитические комплексы металла с компонентами раствора, участвующие в электрохимической стадии процесса растворения.  [c.15]

Кадрик и Келлог (1954 г.) использовали положения теории работы коррозионных гальванических элементов для объяснения основных особенностей кинетики растворения золота в цианистых растворах. Цель их работы состояла в том, чтобы доказать электрохимическую  [c.93]

Электрохимическая теория питтинговой коррозии объясняет питтинг образованием пар дифференциальной аэрации. В растворе, находящемся в локальном углублении образца, уменьшается концентрация растворенного кислорода, в результате чего снижается степень пассивации металла. Поверхность углубления становится анодом по отношению к окружению, покрытому нормальной пассивирующей оксидной пленкой. Непосредственно питтинг образуется за счет локального анодного растворения. Ионам С1" отводится роль нарушителей пассивного состояния. По мере роста питтинга на месте поврежденной пассивирующей пленки в его полости образуется Al lg. Вследствие его гидролиза в питтинге устанавливается пониженное значение pH 3—4 и идет активное растворение алюминия.  [c.230]

Как известно, для кинетики начального селективного растворения разработан подробный математический аппарат, основанный на теории нестационарной объемной диффузии. Другие же стадии растворения пока еще не получили удовлетворительного кинетического описания. Это составляет задачу нового научного направления, формиру бщегося на сты ке теоретической электрохимии, физико-химии поверхности и металловедения и призванного дать непротиворечивую теорию явлений на границе сплава с коррозион юй средой. Очевидно, что, будучи основанной на фундаментальных электрохимических принципах, такая теория должна еще учесть структурно- фазовый состав сплава, строение межфазной границы и приповерхностной зоны, механические напряжения в сплаве и прочее.  [c.193]

Электрохимич. полирование — электрохимия. процесс, протекающий на поверхности анода и в пепосредств. близости к нему, в результате к-рого возникает блеск и улучшается микрорельеф поверхности. Единой теории, удовлетворительно объясняющей все явления, наблюдающиеся в процессе электрохимического полирования, нет. Одной из ранних гипотез, наиболее полно подтверждающейся экспериментально, является гипотеза вязкой плепки. Согласно этой гипотезе, шероховатая поверхность металла в процессе анодного растворения покрывается вязкой пленкой продуктов растворения, к-рая имеет неодинаковую толщину на различных участках поверхности. На выступах ее толщина соответственно меньше, чем на впадинах, вследствие чего сопротивление прохождению тока на этих участках также  [c.26]

Наша страна внесла значительный вклад в развитие этой научной дисциплины. Начало исследований по химической стойкости металлов по-видимому следует связать с именем М. В. Ломоносова и его наблюдением резкого скачка устойчивости (пассивности) железа при повышении концентрации азотной кислоты ( селитряного спирта ). Однако наиболее систематические и широкие коррозионные исследования в России начинают развиваться после Октябрьской социалистической революции. Здесь, в первую очередь, надо отметить акад. В. А. Кистяковского, разработавшего фильмовую теорию коррозии, чл.-кор. АН СССР Н. А. Изгарышева, изучившего ряд важнейших вопросов электрохимической коррозии металлов, акад. А. Н. Фрум-кина, теоретически обосновавшего установление коррозионных (стационарных) потенциалов и механизм гомогенноэлектрохимического растворения металлов и особенно чл.-кор. АН СССР Г. В. Акимова, залолсившего основы структурной коррозии металлов, исследовавшего ряд важнейших теоретических и практических вопросов коррозии и создавшего советскую школу коррозионистов.  [c.11]


Смотреть страницы где упоминается термин Теория электрохимического растворения : [c.58]    [c.82]    [c.119]    [c.141]    [c.142]    [c.47]    [c.58]    [c.316]   
Смотреть главы в:

Коррозия и борьба с ней  -> Теория электрохимического растворения



ПОИСК



Растворение

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте